Efficient Deterministic Approaches for Aerodynamic Shape Optimization

  • Nicolas R. Gauger


Because detailed aerodynamic shape optimizations still suffer from high computational costs, efficient optimization strategies are required. Regarding the deterministic optimization methods, the adjoint approach is seen as a promising alternative to the classical finite difference approach. With the adjoint approach, the sensitivities needed for the aerodynamic shape optimization can be efficiently obtained using the adjoint flow equations. Here, one is independent of the number of design variables with respect to the numerical costs for determining the sensitivities. Another advantage of the adjoint approach is that one obtains accurate sensitivities and gets rid of the laborious tuning of the denominator step sizes for the finite differences.

Differentiation between continuous and discrete adjoint approaches is noted. In the continuous case, one formulates the optimality condition first, then derives the adjoint problem and finally does the discretization of the so obtained adjoint flow equations. In the discrete case, one takes the discretized flow equations for the derivation of the discrete adjoint problem. This can be automated by so-called algorithmic differentiation (AD) tools.

The different adjoint approaches will be explained for single disciplinary aerodynamic shape optimization first and then their extension to multidisciplinary design optimization (MDO) problems will be discussed for aerostructure cases. Finally, we will discuss the so-called one-shot methods. Here, one breaks open the simulation loop for optimization.


Cost Function Design Variable Drag Reduction Adjoint Equation Deterministic Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brezillon, J., Dwight, R.: Discrete adjoint of the Navier-Stokes equations for aerodynamic shape optimization. In: Proceedings of EUROGEN05 (2005)Google Scholar
  2. 2.
    Brezillon, J., Gauger, N.R.: 2D and 3D aerodynamic shape optimization using the adjoint approach. Aerospace Science and Technology 8(8), 715–727 (2004)zbMATHCrossRefGoogle Scholar
  3. 3.
    Dwight, R.: Efficiency improvments of RANS-based analysis and optimization using implicit and adjoint methods on unstructured grids. Ph.D. thesis, DLR-Report No. DLR-FB-2006-11 (ISSN 1434-8454) (2006)Google Scholar
  4. 4.
    Fazzolari, A.: An aero-structure adjoint formulation for efficient multidisciplinary wing optimization. Ph.D. thesis, TU Braunschweig, Germany (2006)Google Scholar
  5. 5.
    Fazzolari, A., Gauger, N.R., Brezillon, J.: An aero-structure adjoint formulation for efficient multidisciplinary wing optimization. In: Proceedings of EUROGEN05 (2005)Google Scholar
  6. 6.
    Fazzolari, A., Gauger, N.R., Brezillon, J.: Efficient aerodynamic shape optimization in mdo context. Journal of Computational and Applied Mathematics 203, 548–560 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gauger, N.R.: Aerodynamic shape optimization using the adjoint Euler equations. In: Proceedings of the GAMM Workshop on Discrete Modelling and Discrete Algorithms in Continuum Mechanics, pp. 87–96. Logos Verlag, Berlin (2001)Google Scholar
  8. 8.
    Gauger, N.R.: Das Adjungiertenverfahren in der aerodynamischen Formoptimierung. Ph.D. thesis, DLR-Report No. DLR-FB-2003-05 (ISSN 1434-8454) (2003)Google Scholar
  9. 9.
    Gauger, N.R., Brezillon, J.: Aerodynamic shape optimization using adjoint method. Journal of the Aeronautical Society of India 54(3), 247–254 (2002)Google Scholar
  10. 10.
    Gauger, N.R., Walther, A., Moldenhauer, C., Widhalm, M.: Automatic differentiation of an entire design chain for aerodynamic shape optimization. In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design (to appear), vol. 96. Springer Verlag (2007)Google Scholar
  11. 11.
    Giering, R., Kaminski, T., Slawig, T.: Applying TAF to a Navier-Stokes solver that simulates an Euler flow around an airfoil. Future Generation Computer Systems 21(8) (2005)Google Scholar
  12. 12.
    Giles, M.B., Duta, M.C., Müller, J.D., Pierce, N.A.: Algorithm developments for discrete adjoint methods. AIAA Journal 41(2), 198–205 (2003)CrossRefGoogle Scholar
  13. 13.
    Griewank, A.: Evaluating Derivatives, Principles and Techniques of Algorithmic Differentiation. Society for Industrial and Applied Mathematics, Philadelphia (2000)zbMATHGoogle Scholar
  14. 14.
    Griewank, A., Juedes, D., Mitev, H., Utke, J., Vogel, O., Walther, A.: ADOL-C: A package for the automatic differentiation of algorithms written in C/C++. Tech. rep., Technical University of Dresden, Institute of Scientific Computing and Institute of Geometry (1999)Google Scholar
  15. 15.
    Hazra, S.B., Schulz, V.: Simultaneous pseudo-timestepping for PDE-model based optimization problems. Bit Numerical Mathematics 44(3), 457–472 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hazra, S.B., Schulz, V., Brezillon, J., Gauger, N.R.: Aerodynamic shape optimization using simultaneous pseudo-timestepping. Journal of Computational Physics 204(1), 46–64 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Heinrich, R.: Implementation and usage of structured algorithms within an unstructured CFD-code. In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 92. Springer Verlag (2006)Google Scholar
  18. 18.
    Hounjet, M.H.L., Prananta, B.B., Zwaan, R.: A thin layer Navier Stokes solver and its application for aeroelastic analysis of an airfoil in transonic flow. Netherlands, DLR-Publication (1995)Google Scholar
  19. 19.
    Jameson, A.: Aerodynamic design via control theory. Journal of Scientific Computing 3, 233–260 (1988)zbMATHCrossRefGoogle Scholar
  20. 20.
    Jameson, A., Martinelli, L., Pierce, N.A.: Optimum aerodynamic design using the navier-stokes equations. Theoretical and Computational Fluid Dynamics 10, 213–237 (1998)zbMATHCrossRefGoogle Scholar
  21. 21.
    Jameson, A., Reuther, J.: Control theory based on airfoil design using the Euler equations. AIAA Proceedings 94-4272-CP (1994)Google Scholar
  22. 22.
    Kroll, N., Rossow, C.C., Schwamborn, D., Becker, K., Heller, G.: MEGAFLOW-A numerical flow simulation tool for transport aircraft design (2002)Google Scholar
  23. 23.
    Martins, J.R., Alonso, J.J., Reuther, J.J.: Complete configuration aero-structural optimization using a coupled sensitivity analysis method. AIAA Paper 2002-5402 (2002)Google Scholar
  24. 24.
    Martins, J.R., Alonso, J.J., Reuther, J.J.: High-fidelity aero-structural design optimization of a supersonic business jet. AIAA Paper 2002-1483 (2002)Google Scholar
  25. 25.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research. Springer (1999)Google Scholar
  26. 26.
    Rossow, C.C.: A flux splitting scheme for compressible and incompressible flows. Journal of Computational Physics 164, 104–122 (2000)zbMATHCrossRefGoogle Scholar
  27. 27.
    Schlenkrich, S., Walther, A., Gauger, N.R., Heinrich, R.: Differentiating fixed point iterations with ADOL-C: Gradient calculation for fluid dynamics. In: Proceedings of the International Conference on High Performance Scientific Computing (2006)Google Scholar
  28. 28.
    Widhalm, M., Gauger, N.R., Brezillon, J.: Implementation of a continuous adjoint solver in TAU. DLR-Report (in press) (2007)Google Scholar
  29. 29.
    Widhalm, M., Rossow, C.C.: Improvement of upwind schemes with the least square method in the DLR TAU code. In: Notes on Numerical Fluid Mechanics, vol. 87, pp. 398–406. Springer Verlag (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nicolas R. Gauger
    • 1
    • 2
  1. 1.Institute of Aerodynamics and Flow TechnologyGerman Aerospace Center (DLR)BraunschweigGermany
  2. 2.Department of MathematicsHumboldt University BerlinBerlinGermany

Personalised recommendations