Using 3D-Laser-Scanners and Image-Recognition for Volume-Based Single-Tree-Delineation and -Parameterization for 3D-GIS-Applications

  • Jürgen Rossmann
  • Arno Bücken
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


Today, 2D-GIS applications are standard tools in administration and management. As with all state-of-the-art systems certain environmental parameters were found to be difficult to perceive and convey, such that a novel 3D-presentation of the environment was developed to be more intuitive. The cost-effective graphics performance of current computers enables the move towards 3D-GIS and in turn, more detailed views of the environment. While current forestry-2D-GISs provide information on areas or collection of trees, the next generation of forestry-3D-GISs will store and make information available at level of an individual tree. In this paper we introduce an approach to bring vision technology into the forest. We present a volumetric algorithm based on the well-known watershed algorithm and use it to detect trees in laser-scanner point-clouds and four-channel aerial views. Based on this data, maps and virtual environments, ‘virtual forests’ are generated which can be used in a 3D-GIS for forest management, disaster management, forest machine navigation and other purposes.


Aerial Photo Disaster Management Digital Terrain Model Lidar Data Digital Surface Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leica ALS50-II Technical Specification, Leica Geosystems, Heerbrugg Switzerland,
  2. 2.
    Riegl LMS-Q560 Technical Specification, Riegl Laser Measurement Systems, Horn, Austria,
  3. 3.
    Katrin Schnadt, Rolf Katzenbeisser: Unique Airborne Fiber Scanner Technique for Application-Oriented Lidar Products, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVI-8/W2Google Scholar
  4. 4.
    Toposys Falcon II Technical Specification, Toposys GmbH, Biberach, Germany,
  5. 5.
    O. Diedershagen, B. Koch, H. Weinacker, C. Schütt. Combining LIDAR-and GIS-Data for the Extraction of Forest Inventory Parameters, 2003Google Scholar
  6. 6.
    Kramer, H. und Akça, A. Leitfaden zur Waldmesslehre. 3. erw. Aufl. Frankfurt a.M., Sauerländer. 266 S., 1995Google Scholar
  7. 7.
    Landesanstalt für Ökologie, Landschaftsentwicklung und Forstplanung Nordrhein-Westfalen. Hilfstafeln für die Forsteinrichtung. 3. Auflage, 1989Google Scholar
  8. 8.
    J. Hyyppä, M. Inkinen. Detecting and estimating attributes for single trees using laser scanner. The Photogrammetric Journal of Finland, Vol. 16, No. 2, s. 27–42, 1999Google Scholar
  9. 9.
    F. Scholten, S. Sujew, F. Wewel, J. Flohrer, R. Jaumann, et al.: The High Resolution Stereo Camera (HRSC)-Digital 3D-Image Acquisition, Photogrammetric Processing and Data Evaluation. “Sensors and Mapping from Space 1999” ISPRS Joint Workshop, Hannover, 27.–30.9.1999, International Society of Photogrammetry and Remote Sensing (ISPRS), International Society of Photogrammetry and Remote Sensing Proc. of Joint Workshop “Sensors and Mapping from Space 1999” (CD-ROM), (1999)Google Scholar
  10. 10.
    H.-J. Klemmt, P. Biber, H. Pretzsch: Mit SILVA in die Zukunft des Waldes blicken, LWF aktuell, Bayrische Landesanstalt für Wald und Forstwirtschaft, No. 46, 2004Google Scholar
  11. 11.
    J. Holmgren. Estimation of Forest Variables using Airborne Laser Scanning, 2003Google Scholar
  12. 12.
    J. Holmgren, A. Persson, U. Södermann. Identification of tree species of individual trees by combining very high resolution laser data with multispectral images. Workshop on 3D Remote Sensing in Forestry, Vienna 2006Google Scholar
  13. 13.
    E. Naesset. Determination of mean tree height of forest stands using airborne laser scanner data, 1996Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jürgen Rossmann
    • 1
  • Arno Bücken
    • 1
  1. 1.Institute of Man-Machine-InteractionRWTH AachenAachen

Personalised recommendations