Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 98))

We overview different types of nonlinear effects recently predicted for microstructured metamaterials which exhibit left-handed properties and negative refraction. We show that both magnetic and electric nonlinear response in such microstructured composites can be enhanced significantly compared to bulk media, since local electric fields in metallic microresonators may become extremely strong. We predict that nonlinear properties of metamaterials can allow for various applications, including a dynamic control and tunability of the electromagnetic properties of the composite structures, second-harmonic generation, intensity-dependent switches, and soliton generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76, 4773. (1996).

    Article  ADS  Google Scholar 

  2. 2. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Tech. 47, 2075 (1999).

    Google Scholar 

  3. P. Markos, C.M. Soukoulis, Phys. Rev. E 65, 036622 (2002).

    Article  ADS  Google Scholar 

  4. P. Markos, C.M. Soukoulis, Phys. Rev. B 65, 033401 (2002).

    Article  ADS  Google Scholar 

  5. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).

    Article  ADS  Google Scholar 

  6. M. Bayindir, K. Aydin, E. Ozbay, P. Markos, C.M. Soukoulis, Appl. Phys. Lett. 81,120(2002).

    Article  ADS  Google Scholar 

  7. C.G. Parazzoli, R.B. Greegor, K. Li, B.E.C. Koltenbah, M. Tanielian, Phys. Rev. Lett. 90, 107401 (2003).

    Article  ADS  Google Scholar 

  8. V.G. Veselago, Usp. Fiz. Nauk 92, 517 (1967) (in Russian) [English translation: Phys. Usp. 10, 509-514 (1968)].

    Google Scholar 

  9. A.A. Zharov, I.V. Shadrivov, Yu.S. Kivshar, Phys. Rev. Lett. 91, 037401 (2003).

    Article  ADS  Google Scholar 

  10. M. Lapine, M. Gorkunov, K.H. Ringhofer, Phys. Rev. E 67, 065601 (2003).

    Article  ADS  Google Scholar 

  11. C. Luo, S.G. Johnson, J.D. Joannopoulos, Appl. Phys. Lett. 81, 2352 (2002).

    Article  ADS  Google Scholar 

  12. C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry, Phys. Rev. B 65, 201104. (2002).

    Article  ADS  Google Scholar 

  13. M. Gorkunov, M. Lapine, E. Shamonina, K.H. Ringhofer, Eur. Phys. J. B 28, 263(2002).

    Article  ADS  Google Scholar 

  14. I.V. Shadrivov, A.A. Zharov, N.A. Zharov, Yu.S. Kivshar, Radio Sci. 40, RS3S90. (2005).

    Article  Google Scholar 

  15. A.M. Belyantsev, V.A. Kozlov, V.I. Piskaryov, Infrared Phys. 21, 79 (1981).

    Article  ADS  Google Scholar 

  16. H. Li, A.L. Roytburd, S.P. Alpay, T.D. Tran, L. Salamanca Riba, R. Ramesh, Appl. Phys. Lett. 78, 2354 (2001).

    Article  ADS  Google Scholar 

  17. N.A. Zharova, I.V. Shadrivov, A.A. Zharov, Yu.S. Kivshar, Opt. Express 13, 1291(2005).

    Article  ADS  Google Scholar 

  18. K. Zauer, L.M. Gorbunov, Fiz. Plazmy 3, 1302 (1977) (in Russian).

    Google Scholar 

  19. A.A. Zharov, A.K. Kotov, Fiz. Plazmy 10, 615 (1984).

    Google Scholar 

  20. A.V. Kochetov, A.M. Feigin, Fiz. Plazmy 14, 716 (1988).

    Google Scholar 

  21. Yu.S. Kivshar, G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals. (Academic, San Diego, 2003).

    Google Scholar 

  22. I.V. Shadrivov, Yu.S. Kivshar, J. Opt. A 7, S68 (2005).

    ADS  Google Scholar 

  23. V.B. Gil’denburg, A.V. Kochetov, A.G. Litvak, A.M. Feigin, Zh. Éksp. Teor. Fiz. 84, 48 (1983).

    Google Scholar 

  24. I.V. Shadrivov, A.A. Sukhorukov, Yu.S. Kivshar, A.A. Zharov, A.D. Boardman, P. Egan, Phys. Rev. E 69, 16617 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  25. J. Nkoma, R. Loudon, D.R. Tilley, J. Phys. C 7, 3547 (1974).

    Article  ADS  Google Scholar 

  26. A.D. Boardman (ed.), Electromagnetic Surface Modes (Wiley, New York, 1982).

    Google Scholar 

  27. R. Ruppin, Phys. Lett. A 277, 61 (2000).

    Article  ADS  Google Scholar 

  28. A.G. Litvak, V.A. Mironov, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 11, 1911. (1968)(in Russian).

    Google Scholar 

  29. V.E. Zakharov, A.B. Shabat, JETP 34, 62 (1972).

    MathSciNet  ADS  Google Scholar 

  30. A.D. Boardman, P. Egan, IEEE J. Quantum Electron. 21, 1701 (1985).

    Article  ADS  Google Scholar 

  31. I.V. Shadrivov, A.A. Sukhorukov, Yu.S. Kivshar, Phys. Rev. E 67, 057602. (2003).

    Article  ADS  Google Scholar 

  32. G.A. Korn, T.M. Korn, Mathematical Handbook for Scientists and Engineers. (McGraw-Hill, New York, 1968).

    Google Scholar 

  33. A.D. Boardman, G.S. Cooper, A.A. Maradudin, T.P. Shen, Phys. Rev. B 34, 8273(1986).

    Article  ADS  Google Scholar 

  34. I.V. Shadrivov, Photon. Nanostruct.: Fundam. Appl. 2, 175 (2004).

    Article  ADS  Google Scholar 

  35. N.N. Akhmediev, ZhÉksp. Teor. Fiz. 83, 545( 1982) (in Russian). [akhmediev:1982-299:jetp].

    Google Scholar 

  36. V.M. Agranovich, Y.R. Shen, R.H. Baughman, A.A. Zakhidov, Phys. Rev. B. 69,165112(2004).

    Article  ADS  Google Scholar 

  37. M. Lapine, M. Gorkunov, Phys. Rev. E 70, 66601 (2004).

    Article  ADS  Google Scholar 

  38. I.V. Shadrivov, A.A. Zharov, Yu.S. Kivshar, J. Opt. Soc. Am. B 23, 529 (2006).

    Article  ADS  Google Scholar 

  39. A.A. Zharov, Fiz. Plazmy 17, 20 (1991).

    Google Scholar 

  40. A.A. Zharov, N.A. Zharova, I.V. Shadrivov, Yu.S. Kivshar, Appl. Phys. Lett. 87,091104(2005).

    Article  ADS  Google Scholar 

  41. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1963).

    Google Scholar 

  42. M. Scalora, G. D Á guanno, M. Bloemer, M. Centini, D. Ceglia, de, N. Mattiucci, Y. Kivshar, Opt. Express 14, 4746 (2006).

    Article  ADS  Google Scholar 

  43. M.V. Gorkunov, I.V. Shadrivov, Yu.S. Kivshar, Appl. Phys. Lett. 88, 71912 (2006).

    Article  Google Scholar 

  44. H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T.M. Grzegorczyk, J.A. Kong, J. Appl. Phys. 96, 5338 (2004).

    Article  ADS  Google Scholar 

  45. R. Marques, F. Medina, R. Rafii El Idrissi, Phys. Rev. B 65, 144440 (2002).

    Article  ADS  Google Scholar 

  46. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001).

    Article  ADS  Google Scholar 

  47. I.V. Shadrivov, N.A. Zharova, A.A. Zharov, Yu.S. Kivshar, Phys. Rev. E 70, 046615 (2004).

    Article  ADS  Google Scholar 

  48. Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

    Google Scholar 

  49. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shadrivov, I.V., Kivshar, Y.S. (2007). Nonlinear Effects in Left-Handed Metamaterials. In: Krowne, C.M., Zhang, Y. (eds) Physics of Negative Refraction and Negative Index Materials. Springer Series in Materials Science, vol 98. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72132-1_12

Download citation

Publish with us

Policies and ethics