Skip to main content

Negative Refraction of Electromagnetic and Electronic Waves in Uniform Media

  • Chapter
Physics of Negative Refraction and Negative Index Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 98))

We discuss various schemes that have been used to realize negative refraction and zero reflection, and the underlying physics that dictates each scheme. The requirements for achieving both negative refraction and zero reflection are explicitly given for different arrangements of the material interface and different structures of the electric permittivity tensor ε. We point out that having a lefthanded medium is neither necessary nor sufficient for achieving negative refraction. The fundamental limitations are discussed for using these schemes to construct a perfect lens or “superlens,” which is the primary context of the current interest in this field. The ability of an ideal “superlens” beyond diffraction-limit “focusing” is contrasted with that of a conventional lens or an immersion lens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).

    Article  ADS  Google Scholar 

  2. J.B. Pendry, Science 305, 788 (2005).

    Google Scholar 

  3. J.B. Pendry, D.R. Smith, Phys. Today 57, 37 (2004).

    Article  Google Scholar 

  4. Y. Zhang, A. Mascarenhas, Mod. Phys. Lett. B 18 (2005).

    Google Scholar 

  5. A. Schuster, An Introduction to the Theory of Optics(Edward Arnold, London, 1904).

    MATH  Google Scholar 

  6. E.I. Rashba, J. Appl. Phys. 79, 4306 (1996).

    Article  ADS  Google Scholar 

  7. C.F. Klingshirn, Semiconductor Optics(Springer, Berlin Heidelberg New York, 1995).

    Google Scholar 

  8. G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, Science 312, 892(2006).

    Article  ADS  Google Scholar 

  9. V.M. Agranovich, V. L. Ginzburg, Spatial Dispersion in Crystal Optics and the Theory of Excitons (Wiley, London, 1966).

    Google Scholar 

  10. V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968).

    Article  ADS  Google Scholar 

  11. A.I. Viktorov, Physical Principles of the Use of Ultrasonic Raleigh and Lamb Waves in Engineering (Nauka, Russia, 1966).

    Google Scholar 

  12. P.V. Burlii, I.Y. Kucherov, JETP Lett. 26, 490 (1977).

    ADS  Google Scholar 

  13. H. Lamb, Proc. London Math. Soc. Sec. II 1, 473 (1904).

    Article  Google Scholar 

  14. C.M. Krowne, Encyclopedia of Rf and Microwave Engineering, vol. 3 (Wiley, New York, 2005), p. 2303.

    Google Scholar 

  15. M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  16. J. Neufeld, R.H. Ritchie, Phys. Rev. 98, 1955 (1955).

    Article  Google Scholar 

  17. V.L. Ginzburg, JETP 34, 1096 (1958).

    MathSciNet  Google Scholar 

  18. V.M. Agranovich, Y.R. Shen, R.H. Baughman, A.A. Zakhidov, Phys. Rev. B. 69,165112(2004).

    Article  ADS  Google Scholar 

  19. M. Born, K. Huang, Dynamical Theory of Crystal Lattices(Clarendon, Oxford, 1954).

    MATH  Google Scholar 

  20. J.J. Hopfield, Phys. Rev. 112, 1555 (1958).

    Article  MATH  ADS  Google Scholar 

  21. V.M. Agranovich, Y.R. Shen, R.H. Baughman, A.A. Zakhidov, J. Lumin. 110, 167(2004).

    Article  Google Scholar 

  22. V.E. Pafomov, Sov. Phys. JETP 36, 1321 (1959).

    Google Scholar 

  23. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001).

    Article  ADS  Google Scholar 

  24. L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Electrodynamics of Continuous Media (Butterworth-Heinemann, Oxford, 1984).

    Google Scholar 

  25. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J.F. Zhou, T. Koschny, C.M. Soukoulis, Phys. Rev. Lett. 95 (2005).

    Google Scholar 

  26. A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, J. Petrovic, Nature 438, 335 (2005).

    Article  ADS  Google Scholar 

  27. S. Zhang, W.J. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, S.R.J. Brueck, Phys. Rev. Lett. 95 (2005).

    Google Scholar 

  28. S. Linden, C. Enkrich, M. Wegener, J.F. Zhou, T. Koschny, C.M. Soukoulis, Science 306, 1351 (2004).

    Article  ADS  Google Scholar 

  29. V.M. Shalaev, W.S. Cai, U.K. Chettiar, H.K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Opt. Lett. 30, 3356 (2005).

    Article  ADS  Google Scholar 

  30. J.B. Pendry, Science 306, 1353 (2004).

    Article  ADS  Google Scholar 

  31. Y. Zhang, B. Fluegel, A. Mascarenhas, Phys. Rev. Lett. 91, 157404 (2003).

    Article  ADS  Google Scholar 

  32. Y. Zhang, A. Mascarenhas, in Mat. Res. Soc. Symp. Proc., vol. 794 (MRS Fall Meeting, Boston, 2003), p. T10.1.

    Google Scholar 

  33. L.I. Perez, M.T. Garea, R.M. Echarri, Opt. Commun. 254, 10 (2005).

    Article  ADS  Google Scholar 

  34. X.L. Chen, H. Ming, D. YinXiao, W.Y. Wang, D.F. Zhang, Phys. Rev. B 72, 113111(2005).

    Article  ADS  Google Scholar 

  35. Y.X. Du, M. He, X.L. Chen, W.Y. Wang, D.F. Zhang, Phys. Rev. B 73, 245110(2006).

    Article  ADS  Google Scholar 

  36. Y. Lu, P. Wang, P. Yao, J. Xie, H. Ming, Opt. Commun. 246, 429 (2005).

    Article  Google Scholar 

  37. Z. Liu, Z.F. Lin, S.T. Chui, Phys. Rev. B 69, 115402 (2004).

    Article  ADS  Google Scholar 

  38. Y. Wang, X.J. Zha, J.K. Yan, Europhys. Lett. 72, 830 (2005).

    Article  ADS  Google Scholar 

  39. K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin Heidelberg New York, 2001).

    Google Scholar 

  40. S. Foteinopoulou, C.M. Soukoulis, Phys. Rev. B 72, 165112 (2005).

    Article  ADS  Google Scholar 

  41. M. Notomi, Phys. Rev. B 62, 10696 (2000).

    Article  ADS  Google Scholar 

  42. P.V. Parimi, W.T.T. Lu, P. Vodo, S. Sridhar, Nature 426, 404 (2003).

    Article  ADS  Google Scholar 

  43. C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry, Phys. Rev. B 65, 201104(2002).

    Article  ADS  Google Scholar 

  44. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis, Nature. 423,604(2003).

    Article  ADS  Google Scholar 

  45. A.B. Pippard, The Dynamics of Conduction Electrons (Gordon and Breach, New York, 1965).

    Google Scholar 

  46. Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

    Google Scholar 

  47. L. Silvestri, O.A. Dubovski, G.C. La Rocca, F. Bassani, V.M. Agranovich, Nuovo Cimento Della Societa Italiana Di Fisica C-Geophysics and Space Physics 27, 437(2004).

    ADS  Google Scholar 

  48. C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry, Phys. Rev. B 68, 45115(2003).

    Article  ADS  Google Scholar 

  49. A.L. Pokrovsky and A.L. Efros, Phys. B 338, 333 (2003).

    Article  ADS  Google Scholar 

  50. D.R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S.A. Ramakrishna, J.B. Pendry, Appl. Phys. Lett. 82, 1506 (2003).

    Article  ADS  Google Scholar 

  51. I. Ichimura, S. Hayashi, G.S. Kino, Appl. Opt. 36, 4339 (1997).

    Article  ADS  Google Scholar 

  52. http://www.semiconductor-technology.com/features/section290/.

  53. S.M. Mansfield, G.S. Kino, Appl. Phys. Lett. 57, 2615 (1990).

    Article  ADS  Google Scholar 

  54. I. Smolyaninov, J. Elliott, A.V. Zayats, C.C. Davis, Phys. Rev. Lett. 94 (2005).

    Google Scholar 

  55. Z.F. Feng, X.D. Zhang, Y.Q. Wang, Z.Y. Li, B.Y. Cheng, D.Z. Zhang, Phys. Rev. Lett. 94 (2005).

    Google Scholar 

  56. Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, D.W. Prather, Phys. Rev. Lett. 95, 153901 (2005).

    Article  ADS  Google Scholar 

  57. N. Fang, H. Lee, C. Sun, X. Zhang, Science 308, 534 (2005).

    Article  ADS  Google Scholar 

  58. D.O.S. Melville, R.J. Blaikie, Opt. Express 13, 2127 (2005).

    Article  ADS  Google Scholar 

  59. J.M. Vigoureux, D. Courjon, Appl. Opt. 31, 3170 (1992).

    Article  ADS  Google Scholar 

  60. A.L. Efros, A.L. Pokrovsky, Solid State Commun. 129, 643 (2004).

    Article  ADS  Google Scholar 

  61. T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, B. Gralak, Phys. Rev. Lett. 97(2006).

    Google Scholar 

  62. I.V. Lindell, S.A. Tretyakov, K.I. Nikoskinen, S. Ilvonen, Microw. Opt. Technol. Lett. 31, 129 (2001).

    Article  Google Scholar 

  63. L.B. Hu, S.T. Chui, Phys. Rev. B 66, 085108 (2002).

    Article  ADS  Google Scholar 

  64. L. Zhou, C.T. Chan, P. Sheng, Phys. Rev. B 68, 115424 (2003).

    Article  ADS  Google Scholar 

  65. D.R. Smith, D. Schurig, Phys. Rev. Lett. 90, 077405 (2003).

    Article  ADS  Google Scholar 

  66. T. Dumelow, J.A.P. da Costa, V.N. Freire, Phys. Rev. B 72 (2005).

    Google Scholar 

  67. S.D. Gedney, IEEE Trans. Antennas Propagat. 44, 1630 (1996).

    Google Scholar 

  68. A. Lakhtakia, R. Messier, Opt. Eng. 33, 2529 (1994).

    Article  ADS  Google Scholar 

  69. G.Y. Slepyan, A.S. Maksimenko, Opt. Eng. 37, 2843 (1998).

    Article  ADS  Google Scholar 

  70. Y. Zhang, A. Mascarenhas, Phys. Rev. B 55, 13100 (1997).

    Article  ADS  Google Scholar 

  71. Y. Zhang, A. Mascarenhas, S.P. Ahrenkiel, D.J. Friedman, J. Geisz, J.M. Olson, Solid State Commun. 109, 99 (1999).

    Article  Google Scholar 

  72. Y. Zhang, B. Fluegel, S.P. Ahrenkiel, D.J. Friedman, J. Geisz, J.M. Olson, A. Mascarenhas, Mat. Res. Soc. Symp. Proc. 583, 255 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, Y., Mascarenhas, A. (2007). Negative Refraction of Electromagnetic and Electronic Waves in Uniform Media. In: Krowne, C.M., Zhang, Y. (eds) Physics of Negative Refraction and Negative Index Materials. Springer Series in Materials Science, vol 98. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72132-1_1

Download citation

Publish with us

Policies and ethics