Skip to main content

Hybrid Web Recommender Systems

  • Chapter
The Adaptive Web

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4321))

Abstract

Adaptive web sites may offer automated recommendations generated through any number of well-studied techniques including collaborative, content-based and knowledge-based recommendation. Each of these techniques has its own strengths and weaknesses. In search of better performance, researchers have combined recommendation techniques to build hybrid recommender systems. This chapter surveys the space of two-part hybrid recommender systems, comparing four different recommendation techniques and seven different hybridization strategies. Implementations of 41 hybrids including some novel combinations are examined and compared. The study finds that cascade and augmented hybrids work well, especially when combining two components of differing strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balabanovic, M.: An Adaptive Web Page Recommendation Service. In: Proceedings of the First International Conference on Autonomous Agents, Agents 97, Marina Del Rey, pp. 378–385 (1997)

    Google Scholar 

  2. Balabanovic, M.: Exploring versus Exploiting when Learning User Models for Text Representation. UMUAU 8(1-2), 71–102 (1998)

    Google Scholar 

  3. Basu, C., Hirsh, H., Cohen, W.: Recommendation as Classification: Using Social and Content-Based Information in Recommendation. In: Proc. of the 15th Natl. Conf. on AI, Madison, WI, pp. 714–720 (1998)

    Google Scholar 

  4. Billsus, D., Pazzani, M.: User Modeling for Adaptive News Access. UMUAI 10(2-3), 147–180 (2000)

    Article  Google Scholar 

  5. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proc. of the 14th Annual Conf. on Uncertainty in AI, pp. 43–52 (1998)

    Google Scholar 

  6. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comp. Networks and ISDN Systems 30(1–7), 107–117 (1998)

    Article  Google Scholar 

  7. Brunato, M., Battiti, R.: A Location-Dependent Recommender System for the Web. In: Proceedings of the MobEA Workshop, Budapest, May 20 (2003), Accessed at, http://www.science.unitn.it/~brunato/pubblicazioni/MobEA.pdf

  8. Burke, R.: The Wasabi Personal Shopper: A Case-Based Recommender System. In: Proc. of the 11th Nat. Conf. on Innovative Appl. of AI, pp. 844–849 (1999)

    Google Scholar 

  9. Burke, R.: Knowledge-based Recommender Systems. In: A. Kent (ed.): Encyclopedia of Library and Information Systems, vol. 69, Sup. 32 (2000)

    Google Scholar 

  10. Burke, R.: Hybrid Recommender Systems: Survey and Experiments. UMUAI 12(4), 331–370 (2002)

    Article  MATH  Google Scholar 

  11. Burke, R.: Hybrid Recommender Systems: A Comparative Study. CTI Technical Report 06-012. (2006), Available at, http://www.cs.depaul.edu/research/technical.asp

  12. Burke, R., Hammond, K., Young, B.: The FindMe Approach to Assisted Browsing. IEEE Expert 12(4), 32–40 (1997)

    Article  Google Scholar 

  13. Cheetham, W., Price, J.: Measures of Solution Accuracy in Case-Based Reasoning Systems. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 106–118. Springer, London (2004)

    Google Scholar 

  14. Chen, L., Sycara, K.: WebMate: A personal agent for browsing and searching. In: Proc. of the 2nd Intl Conf. on Autonomous Agents, Agents’98, pp. 132–139. ACM Press, New York (1998)

    Chapter  Google Scholar 

  15. Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., Sartin, M.: Combining Content-Based and Collaborative Filters in an Online Newspaper. SIGIR ’99 Workshop on Recommender Systems: Algorithms and Evaluation, Berkeley (1999), Accessed at, http://www.cs.umbc.edu/~ian/sigir99-rec/papers/claypool_m.ps.gz

  16. Cohen, W.W.: Fast effective rule induction’. In: Machine Learning: Proc. of the 12th Intl. Conf., Lake Tahoe, pp. 115-123 (1995)

    Google Scholar 

  17. Goldberg, D., Nichols, D., Oki, B., Terry, D.: Using collaborative filtering to weave an information tapestry. CACM 35(12), 61–70 (1992)

    Google Scholar 

  18. Good, N., Schafer, B., Konstan, J., Borchers, A., Sarwar, B., Herlocker, J., Riedl, J.: Combining Collaborative Filtering With Personal Agents for Better Recommendations. In: Proceedings of the AAAI’99 Conf, pp. 439–446 (1999)

    Google Scholar 

  19. Herlocker, J., Konstan, J., Borchers, A., Riedl, J.: An Algorithmic Framework for Performing Collaborative Filtering. In: Proc. of the 1999 Conf. on Research and Development in Information Retrieval. Berkeley, SIGIR ’99, pp. 230-237 (1999)

    Google Scholar 

  20. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating Collaborative Filtering Recommender Systems. ACM Trans. on Inf. Sys. 22(1) (2004)

    Google Scholar 

  21. Hill, W., Stead, L., Rosenstein, M., Furnas, G.: Recommending and evaluating choices in a virtual community of use. In: Conf. Proc. on Human Factors in Computing Sys. CHI ’95, Denver, pp. 194–201 (1995)

    Google Scholar 

  22. Jennings, A., Higuchi, H.: A User Model Neural Network for a Personal News Service. UMUAI 3, 1–25 (1993)

    Article  Google Scholar 

  23. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  24. Krulwich, B.: Lifestyle Finder: Intelligent User Profiling Using Large-Scale Demographic Data. AI Magazine 18(2), 37–45 (1997)

    Google Scholar 

  25. Lang, K.: Newsweeder: Learning to filter news. In: Proc. of the 12th Intl Conf. on Machine Learning, Lake Tahoe, CA, pp. 331–339 (1995)

    Google Scholar 

  26. Littlestone, N., Warmuth, M.: The Weighted Majority Algorithm. Information and Computation 108(2), 212–261 (2004)

    Article  MathSciNet  Google Scholar 

  27. McCarthy, J.F., Anagnost, T.D.: MUSICFX: An Arbiter of Group Preferences for Computer Supported Collaborative Workouts. In: Proc. of the ACM 1998 Conf. on Comp. Support. Coop. Work. CSCW 98, pp. 363–372. ACM Press, New York (1998)

    Chapter  Google Scholar 

  28. McCarthy, K., McGinty, L., Smyth, B., Reilly, J.: A Live-User Evaluation of Incremental Dynamic Critiquing’. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 339–352. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  29. McSherry, D.: Diversity-Conscious Retrieval. In S. Craw & A. Preece (eds.): Advances in CBR (6th Eur. Conf., ECCBR 2002). Aberdeen, Scotland, 219-233. (2002)

    Google Scholar 

  30. Melville, P., Mooney, R.J., Nagarajan, R.: Content-Boosted Collaborative Filtering for Improved Recommendations. In: Proc. of the 18th Natl. Conf. on AI. AAAI-2002, pp. 187–192 (2002)

    Google Scholar 

  31. Mobasher, B., Dai, H., Luo, T., Nakagawa, M.: Discovery and evaluation of aggregate usage profiles for web personalization. Data. Mining and Knowledge Discovery 6, 61–82 (2002)

    Article  MathSciNet  Google Scholar 

  32. Mobasher, B., Jin, X., Zhou, Y.: Semantically Enhanced Collaborative Filtering on the Web’. In: Berendt, B., Hotho, A., Mladenić, D., van Someren, M., Spiliopoulou, M., Stumme, G. (eds.) EWMF 2003. LNCS (LNAI), vol. 3209, Springer, Heidelberg (2004)

    Google Scholar 

  33. Mobasher, B., Nakagawa, M.: A Hybrid Web Personalization Model Based on Site Connectivity. In: Proc. of the WebKDD Workshop at the ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, Washington, DC (2003)

    Google Scholar 

  34. Mooney, R.J., Roy, L.: Content-Based Book Recommending Using Learning for Text Categorization. In: SIGIR ’99 Workshop on Recommender Systems: Algorithms and Evaluation, Berkeley (1999), Accessed at, http://www.cs.umbc.edu/~ian/sigir99-rec/papers/ mooney_r.ps.gz

  35. O’Sullivan, D., Smyth, B., Wilson, D.C.: Preserving recommender accuracy and diversity in sparse datasets. Intl. J. on AI Tools 13(1), 219–235 (2004)

    Article  Google Scholar 

  36. Pazzani, M.J.: A Framework for Collaborative, Content-Based and Demographic Filtering. AI Review 13(5/6), 393–408 (1999)

    Google Scholar 

  37. Pazzani, M., Billsus, D.: Learning and Revising User Profiles: The Identification of Interesting Web Sites. Machine Learning 27, 313–331 (1997)

    Article  Google Scholar 

  38. Pazzani, M., Muramatsu, J., Billsus, D.: Syskill & Webert: Identifying Interesting Web Sites. In: Proc. of the 13th Natl Conf. on AI, pp. 54-61 (1996)

    Google Scholar 

  39. Pu, P.H.Z., Kumar, P.: Evaluating Example-based Search Tools. In: Proc. of the 5th ACM Conf. on Electronic Commerce. EC’04, pp. 208–215. ACM Press, New York (2004)

    Chapter  Google Scholar 

  40. Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Incremental Critiquing. In: Bramer, M., et al. (eds.) Research and Devel. in Int. Sys. XXI. AI-2004, Cambridge, UK (2004)

    Google Scholar 

  41. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In: Proc. of the Conf. on Comp. Supp. Coop. Work, Chapel Hill, NC, pp. 175–186 (1994)

    Google Scholar 

  42. Resnick, P., Varian, H.R.: Recommender Systems. Comm. of the ACM 40(3), 56–58 (1997)

    Article  Google Scholar 

  43. Sarwar, B.M., Konstan, J.A., Borchers, A., Herlocker, J., Miller, B., Riedl, J.: Using Filtering Agents to Improve Prediction Quality in the GroupLens Research Collaborative Filtering System. In: Proc. of the ACM 1998 Conf. on Comp. Supp. Coop. Work, Seattle, pp. 345–354. ACM Press, New York (1998)

    Chapter  Google Scholar 

  44. Schmitt, S., Bergmann, R.: Applying case-based reasoning technology for product selection and customization in electronic commerce environments. In: 12th Bled Electronic Commerce Conf., Slovenia, June 7-9 (1999)

    Google Scholar 

  45. Schwab, I., Kobsa, A.: Adaptivity through Unobstrusive Learning. Künstliche Intelligenz 16(3), 5–9 (2002)

    Google Scholar 

  46. Shardanand, U., Maes, P.: Social Information Filtering: Algorithms for Automating “Word of Mouth”. In: Conf. Proc. on Human Factors in Comp. Sys. CHI ’95, Denver, CO, pp. 210–217 (1995)

    Google Scholar 

  47. Shimazu, H.: Navigating Shoppers’ Buying Process with the Combination of Asking and Proposing. In: Nebel, B. (ed.) Proceedings of the 17th Intl. J. Conf. on AI, pp. 1443–1448 (2001)

    Google Scholar 

  48. Smyth, B., Cotter, P.: A Personalized TV Listings Service for the Digital TV Age. Knowledge-Based. Systems 13, 53–59 (2000)

    Article  Google Scholar 

  49. Van Setten, M.: Supporting People in Finding Information: Hybrid Recommender Systems and Goal-Based Structuring. Report No. 016 (TI/FRS/016). Telematica Institut, Enschede, the Netherlands (2005)

    Google Scholar 

  50. Wilson, D.C., Smyth, B., O’Sullivan, D.: Sparsity Reduction in Collaborative Recommendation: A Case-Based Approach. Intl. J. of Pattern Recognition and AI 17(5), 863–884 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter Brusilovsky Alfred Kobsa Wolfgang Nejdl

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Burke, R. (2007). Hybrid Web Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds) The Adaptive Web. Lecture Notes in Computer Science, vol 4321. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72079-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72079-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72078-2

  • Online ISBN: 978-3-540-72079-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics