Hybrid Web Recommender Systems

  • Robin Burke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4321)


Adaptive web sites may offer automated recommendations generated through any number of well-studied techniques including collaborative, content-based and knowledge-based recommendation. Each of these techniques has its own strengths and weaknesses. In search of better performance, researchers have combined recommendation techniques to build hybrid recommender systems. This chapter surveys the space of two-part hybrid recommender systems, comparing four different recommendation techniques and seven different hybridization strategies. Implementations of 41 hybrids including some novel combinations are examined and compared. The study finds that cascade and augmented hybrids work well, especially when combining two components of differing strengths.


Recommender System User Profile Knowledge Source Collaborative Filter Feature Combination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balabanovic, M.: An Adaptive Web Page Recommendation Service. In: Proceedings of the First International Conference on Autonomous Agents, Agents 97, Marina Del Rey, pp. 378–385 (1997)Google Scholar
  2. 2.
    Balabanovic, M.: Exploring versus Exploiting when Learning User Models for Text Representation. UMUAU 8(1-2), 71–102 (1998)Google Scholar
  3. 3.
    Basu, C., Hirsh, H., Cohen, W.: Recommendation as Classification: Using Social and Content-Based Information in Recommendation. In: Proc. of the 15th Natl. Conf. on AI, Madison, WI, pp. 714–720 (1998)Google Scholar
  4. 4.
    Billsus, D., Pazzani, M.: User Modeling for Adaptive News Access. UMUAI 10(2-3), 147–180 (2000)CrossRefGoogle Scholar
  5. 5.
    Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proc. of the 14th Annual Conf. on Uncertainty in AI, pp. 43–52 (1998)Google Scholar
  6. 6.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comp. Networks and ISDN Systems 30(1–7), 107–117 (1998)CrossRefGoogle Scholar
  7. 7.
    Brunato, M., Battiti, R.: A Location-Dependent Recommender System for the Web. In: Proceedings of the MobEA Workshop, Budapest, May 20 (2003), Accessed at,
  8. 8.
    Burke, R.: The Wasabi Personal Shopper: A Case-Based Recommender System. In: Proc. of the 11th Nat. Conf. on Innovative Appl. of AI, pp. 844–849 (1999)Google Scholar
  9. 9.
    Burke, R.: Knowledge-based Recommender Systems. In: A. Kent (ed.): Encyclopedia of Library and Information Systems, vol. 69, Sup. 32 (2000)Google Scholar
  10. 10.
    Burke, R.: Hybrid Recommender Systems: Survey and Experiments. UMUAI 12(4), 331–370 (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Burke, R.: Hybrid Recommender Systems: A Comparative Study. CTI Technical Report 06-012. (2006), Available at,
  12. 12.
    Burke, R., Hammond, K., Young, B.: The FindMe Approach to Assisted Browsing. IEEE Expert 12(4), 32–40 (1997)CrossRefGoogle Scholar
  13. 13.
    Cheetham, W., Price, J.: Measures of Solution Accuracy in Case-Based Reasoning Systems. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 106–118. Springer, London (2004)Google Scholar
  14. 14.
    Chen, L., Sycara, K.: WebMate: A personal agent for browsing and searching. In: Proc. of the 2nd Intl Conf. on Autonomous Agents, Agents’98, pp. 132–139. ACM Press, New York (1998)CrossRefGoogle Scholar
  15. 15.
    Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., Sartin, M.: Combining Content-Based and Collaborative Filters in an Online Newspaper. SIGIR ’99 Workshop on Recommender Systems: Algorithms and Evaluation, Berkeley (1999), Accessed at,
  16. 16.
    Cohen, W.W.: Fast effective rule induction’. In: Machine Learning: Proc. of the 12th Intl. Conf., Lake Tahoe, pp. 115-123 (1995)Google Scholar
  17. 17.
    Goldberg, D., Nichols, D., Oki, B., Terry, D.: Using collaborative filtering to weave an information tapestry. CACM 35(12), 61–70 (1992)Google Scholar
  18. 18.
    Good, N., Schafer, B., Konstan, J., Borchers, A., Sarwar, B., Herlocker, J., Riedl, J.: Combining Collaborative Filtering With Personal Agents for Better Recommendations. In: Proceedings of the AAAI’99 Conf, pp. 439–446 (1999)Google Scholar
  19. 19.
    Herlocker, J., Konstan, J., Borchers, A., Riedl, J.: An Algorithmic Framework for Performing Collaborative Filtering. In: Proc. of the 1999 Conf. on Research and Development in Information Retrieval. Berkeley, SIGIR ’99, pp. 230-237 (1999)Google Scholar
  20. 20.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating Collaborative Filtering Recommender Systems. ACM Trans. on Inf. Sys. 22(1) (2004)Google Scholar
  21. 21.
    Hill, W., Stead, L., Rosenstein, M., Furnas, G.: Recommending and evaluating choices in a virtual community of use. In: Conf. Proc. on Human Factors in Computing Sys. CHI ’95, Denver, pp. 194–201 (1995)Google Scholar
  22. 22.
    Jennings, A., Higuchi, H.: A User Model Neural Network for a Personal News Service. UMUAI 3, 1–25 (1993)CrossRefGoogle Scholar
  23. 23.
    Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Mateo (1993)Google Scholar
  24. 24.
    Krulwich, B.: Lifestyle Finder: Intelligent User Profiling Using Large-Scale Demographic Data. AI Magazine 18(2), 37–45 (1997)Google Scholar
  25. 25.
    Lang, K.: Newsweeder: Learning to filter news. In: Proc. of the 12th Intl Conf. on Machine Learning, Lake Tahoe, CA, pp. 331–339 (1995)Google Scholar
  26. 26.
    Littlestone, N., Warmuth, M.: The Weighted Majority Algorithm. Information and Computation 108(2), 212–261 (2004)CrossRefMathSciNetGoogle Scholar
  27. 27.
    McCarthy, J.F., Anagnost, T.D.: MUSICFX: An Arbiter of Group Preferences for Computer Supported Collaborative Workouts. In: Proc. of the ACM 1998 Conf. on Comp. Support. Coop. Work. CSCW 98, pp. 363–372. ACM Press, New York (1998)CrossRefGoogle Scholar
  28. 28.
    McCarthy, K., McGinty, L., Smyth, B., Reilly, J.: A Live-User Evaluation of Incremental Dynamic Critiquing’. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 339–352. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    McSherry, D.: Diversity-Conscious Retrieval. In S. Craw & A. Preece (eds.): Advances in CBR (6th Eur. Conf., ECCBR 2002). Aberdeen, Scotland, 219-233. (2002)Google Scholar
  30. 30.
    Melville, P., Mooney, R.J., Nagarajan, R.: Content-Boosted Collaborative Filtering for Improved Recommendations. In: Proc. of the 18th Natl. Conf. on AI. AAAI-2002, pp. 187–192 (2002)Google Scholar
  31. 31.
    Mobasher, B., Dai, H., Luo, T., Nakagawa, M.: Discovery and evaluation of aggregate usage profiles for web personalization. Data. Mining and Knowledge Discovery 6, 61–82 (2002)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Mobasher, B., Jin, X., Zhou, Y.: Semantically Enhanced Collaborative Filtering on the Web’. In: Berendt, B., Hotho, A., Mladenić, D., van Someren, M., Spiliopoulou, M., Stumme, G. (eds.) EWMF 2003. LNCS (LNAI), vol. 3209, Springer, Heidelberg (2004)Google Scholar
  33. 33.
    Mobasher, B., Nakagawa, M.: A Hybrid Web Personalization Model Based on Site Connectivity. In: Proc. of the WebKDD Workshop at the ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, Washington, DC (2003)Google Scholar
  34. 34.
    Mooney, R.J., Roy, L.: Content-Based Book Recommending Using Learning for Text Categorization. In: SIGIR ’99 Workshop on Recommender Systems: Algorithms and Evaluation, Berkeley (1999), Accessed at,
  35. 35.
    O’Sullivan, D., Smyth, B., Wilson, D.C.: Preserving recommender accuracy and diversity in sparse datasets. Intl. J. on AI Tools 13(1), 219–235 (2004)CrossRefGoogle Scholar
  36. 36.
    Pazzani, M.J.: A Framework for Collaborative, Content-Based and Demographic Filtering. AI Review 13(5/6), 393–408 (1999)Google Scholar
  37. 37.
    Pazzani, M., Billsus, D.: Learning and Revising User Profiles: The Identification of Interesting Web Sites. Machine Learning 27, 313–331 (1997)CrossRefGoogle Scholar
  38. 38.
    Pazzani, M., Muramatsu, J., Billsus, D.: Syskill & Webert: Identifying Interesting Web Sites. In: Proc. of the 13th Natl Conf. on AI, pp. 54-61 (1996)Google Scholar
  39. 39.
    Pu, P.H.Z., Kumar, P.: Evaluating Example-based Search Tools. In: Proc. of the 5th ACM Conf. on Electronic Commerce. EC’04, pp. 208–215. ACM Press, New York (2004)CrossRefGoogle Scholar
  40. 40.
    Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Incremental Critiquing. In: Bramer, M., et al. (eds.) Research and Devel. in Int. Sys. XXI. AI-2004, Cambridge, UK (2004)Google Scholar
  41. 41.
    Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In: Proc. of the Conf. on Comp. Supp. Coop. Work, Chapel Hill, NC, pp. 175–186 (1994)Google Scholar
  42. 42.
    Resnick, P., Varian, H.R.: Recommender Systems. Comm. of the ACM 40(3), 56–58 (1997)CrossRefGoogle Scholar
  43. 43.
    Sarwar, B.M., Konstan, J.A., Borchers, A., Herlocker, J., Miller, B., Riedl, J.: Using Filtering Agents to Improve Prediction Quality in the GroupLens Research Collaborative Filtering System. In: Proc. of the ACM 1998 Conf. on Comp. Supp. Coop. Work, Seattle, pp. 345–354. ACM Press, New York (1998)CrossRefGoogle Scholar
  44. 44.
    Schmitt, S., Bergmann, R.: Applying case-based reasoning technology for product selection and customization in electronic commerce environments. In: 12th Bled Electronic Commerce Conf., Slovenia, June 7-9 (1999)Google Scholar
  45. 45.
    Schwab, I., Kobsa, A.: Adaptivity through Unobstrusive Learning. Künstliche Intelligenz 16(3), 5–9 (2002)Google Scholar
  46. 46.
    Shardanand, U., Maes, P.: Social Information Filtering: Algorithms for Automating “Word of Mouth”. In: Conf. Proc. on Human Factors in Comp. Sys. CHI ’95, Denver, CO, pp. 210–217 (1995)Google Scholar
  47. 47.
    Shimazu, H.: Navigating Shoppers’ Buying Process with the Combination of Asking and Proposing. In: Nebel, B. (ed.) Proceedings of the 17th Intl. J. Conf. on AI, pp. 1443–1448 (2001)Google Scholar
  48. 48.
    Smyth, B., Cotter, P.: A Personalized TV Listings Service for the Digital TV Age. Knowledge-Based. Systems 13, 53–59 (2000)CrossRefGoogle Scholar
  49. 49.
    Van Setten, M.: Supporting People in Finding Information: Hybrid Recommender Systems and Goal-Based Structuring. Report No. 016 (TI/FRS/016). Telematica Institut, Enschede, the Netherlands (2005)Google Scholar
  50. 50.
    Wilson, D.C., Smyth, B., O’Sullivan, D.: Sparsity Reduction in Collaborative Recommendation: A Case-Based Approach. Intl. J. of Pattern Recognition and AI 17(5), 863–884 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Robin Burke
    • 1
  1. 1.School of Computer Science, Telecommunications and Information Systems, DePaul University, 243 S. Wabash Ave., Chicago, IllinoisUSA

Personalised recommendations