Shake Well Before Use: Authentication Based on Accelerometer Data

  • Rene Mayrhofer
  • Hans Gellersen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4480)


Small, mobile devices without user interfaces, such as Bluetooth headsets, often need to communicate securely over wireless networks. Active attacks can only be prevented by authenticating wireless communication, which is problematic when devices do not have any a priori information about each other. We introduce a new method for device-to-device authentication by shaking devices together. This paper describes two protocols for combining cryptographic authentication techniques with known methods of accelerometer data analysis to the effect of generating authenticated, secret keys. The protocols differ in their design, one being more conservative from a security point of view, while the other allows more dynamic interactions. Three experiments are used to optimize and validate our proposed authentication method.


Feature Vector Smart Card Block Cipher Authentication Protocol Accelerometer Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hoepman, J.H.: The emphemeral pairing problem. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 212–226. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Holmquist, L.E., et al.: Smart-its friends: A technique for users to easily establish connections between smart artefacts. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001. LNCS, vol. 2201, pp. 116–122. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Stajano, F., Anderson, R.: The resurrecting duckling: Security issues for ad-hoc wireless networks. In: Malcolm, J.A., et al. (eds.) Security Protocols 1999. LNCS, vol. 1796, pp. 172–194. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Kindberg, T., Zhang, K., Im, S.H.: Evidently secure device associations. Technical Report HPL-2005-40, HP Laboratories Bristol (2005)Google Scholar
  5. 5.
    Kindberg, T., Zhang, K.: Validating and securing spontaneous associations between wireless devices. In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 44–53. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    McCune, J.M., Perrig, A., Reiter, M.K.: Seeing-is-believing: Using camera phones for human-verifiable authentication. In: Proc. IEEE Symp. on Security and Privacy, pp. 110–124. IEEE CS Press, Los Alamitos (2005)Google Scholar
  7. 7.
    Goodrich, M.T., et al.: Loud and clear: Human verifiable authentication based on audio. In: Proc. ICDCS 2006: 26th Conf. on Distributed Computing, p. 10. IEEE CS Press, Los Alamitos (2006)Google Scholar
  8. 8.
    Nicholson, A.J., et al.: LoKey: Leveraging the sms network in decentralized, end-to-end trust establishment. In: Fishkin, K.P., et al. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 202–219. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Čagalj, M., Čapkun, S., Hubaux, J.P.: Key agreement in peer-to-peer wireless networks. IEEE (Special Issue on Cryptography and Security) 94, 467–478 (2006)Google Scholar
  10. 10.
    Gehrmann, C., Mitchell, C.J., Nyberg, K.: Manual authentication for wireless devices. RSA Cryptobytes 7, 29–37 (2004)Google Scholar
  11. 11.
    Castelluccia, C., Mutaf, P.: Shake them up? In: Proc. MobiSys 2005: 3rd Int. Conf. on Mobile Systems, Applications, and Services, pp. 51–64. ACM Press, New York (2005)CrossRefGoogle Scholar
  12. 12.
    Hinckley, K.: Synchronous gestures for multiple persons and computers. In: Proc. UIST ’03: 16th ACM Symp. on User Interface Software and Technology, pp. 149–158. ACM Press, New York (2003)CrossRefGoogle Scholar
  13. 13.
    Borriello, G., Hannaford, B., Lester, J.: “Are you with me?” – Using accelerometers to determine if two devices are carried by the same person. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 33–50. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Batina, L., Mentens, N., Verbauwhede, I.: Side-channel issues for designing secure hardware implementations. In: Proc. IOLTS: IEEE Online Testing Symp. (2005)Google Scholar
  15. 15.
    Lukowicz, P., Junker, H., Tröster, G.: Automatic Calibration of Body Worn Acceleration Sensors. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 176–181. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Aylward, R., Lovell, S.D., Paradiso, J.A.: A compact, wireless, wearable sensor network for interactive dance ensembles. In: Proc. BSN 2006: Int. Workshop on Wearable and Implantable Body Sensor Networks, pp. 65–68. IEEE CS Press, Los Alamitos (2006)CrossRefGoogle Scholar
  17. 17.
    Huynh, T., Schiele, B.: Analyzing features for activity recognition. In: Proc. Soc-EUSAI 2005. ACM Int. Conf. Proceeding Series, pp. 159–163. ACM Press, New York (2005)CrossRefGoogle Scholar
  18. 18.
    Ferguson, N., Schneier, B.: Practical Cryptography. Wiley, Chichester (2003)Google Scholar
  19. 19.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. on Information Theory 22, 644–654 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Rivest, R.L., Shamir, A.: How to expose an eavesdropper. Commununications of ACM 27, 393–394 (1984)CrossRefGoogle Scholar
  21. 21.
    Vaudenay, S.: Secure communications over insecure channels based on short authenticated strings. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, Springer, Heidelberg (2005)Google Scholar
  22. 22.
    Wang, X., Yin, Y., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Rene Mayrhofer
    • 1
  • Hans Gellersen
    • 1
  1. 1.Lancaster University, Computing Department, South Drive, Lancaster LA1 4WAUK

Personalised recommendations