An Exploration into Activity-Informed Physical Advertising Using PEST

  • Matthias C. Sala
  • Kurt Partridge
  • Linda Jacobson
  • James “Bo” Begole
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4480)


Targeted advertising benefits consumers by delivering them only the messages that match their interests, and also helps advertisers by identifying only the consumers interested in their messages. Although targeting mechanisms for online advertising are well established, pervasive computing environments lack analogous approaches. This paper explores the application of activity inferencing to targeted advertising. We present two mechanisms that link activity descriptions with ad content: direct keyword matching using an online advertising service, and “human computation” matching, which enhances keyword matching with help from online workers. The direct keyword approach is easier to engineer and responds more quickly, whereas the human computation approach has the potential to target more effectively.


Ubiquitous computing experience sampling method human computation advertising. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aalto, L., et al.: Bluetooth and WAP push based location-aware mobile advertising system. In: MobiSys (2004)Google Scholar
  2. 2.
    Barr, J., Cabrera, L.F.: AI gets a brain. Queue 4(4) (2006), doi:10.1145/1142055.1142067Google Scholar
  3. 3.
    Bulander, R., et al.: Comparison of different approaches for mobile advertising. In: Second IEEE International Workshop on Mobile Commerce and Services, IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  4. 4.
    Carter, S., Mankoff, J.: Momento: Early stage prototyping and evaluation for mobile applications. Technical report, University of California, Berkeley, CSD-05-1380 (April 2005)Google Scholar
  5. 5.
    Claypool, M., et al.: Implicit interest indicators. In: IUI (2001), doi:10.1145/359784.359836Google Scholar
  6. 6.
    Consolvo, S., Walker, M.: Using the experience sampling method to evaluate ubicomp applications. IEEE Pervasive Computing 2(2) (2003)Google Scholar
  7. 7.
    Potter, F., et al.: Voting with Your Feet: An Investigative Study of the Relationship Between Place Visit Behavior and Preference. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 333–350. Springer, Heidelberg (2006)Google Scholar
  8. 8.
    Harms, J., Kellner, D.: Towards a critical theory of advertising,
  9. 9.
    Hudson, J.M., et al.: “I’d be overwhelmed, but it’s just one more thing to do”: Availability and interruption in research management. In: CHI, Minneapolis, Minnesota, USA (2002), doi:10.1145/503376.503394Google Scholar
  10. 10.
    Cellfire Inc.,
  11. 11.
    Intille, S.S., et al.: A context-aware experience sampling tool. In: CHI, Ft. Lauderdale, Florida, USA (2003), doi:10.1145/765891.766101Google Scholar
  12. 12.
    Borriello, G., Lester, J., Choudhury, T.: A Practical Approach to Recognizing Physical Activities. In: Fishkin, K.P., et al. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 1–16. Springer, Heidelberg (2006)Google Scholar
  13. 13.
    Freeset Human Locator,
  14. 14.
    Starner, T., et al.: Recognizing Workshop Activity Using Body Worn Microphones and Accelerometers. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 18–32. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Madabhushi, A., Aggarwal, J.K.: A bayesian approach to human activity recognition. In: Second IEEE Workshop on Visual Survelliance (1999)Google Scholar
  16. 16.
    Mandese, J.: Online ad spend predicted to reach $20 billion. Online Media Daily (June 2006)Google Scholar
  17. 17.
    Oliver, N., Horvitz, E., Garg, A.: Layered representations for recognizing office activity. In: Fourth IEEE International Conference on Multimodal Interaction, IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  18. 18.
  19. 19.
  20. 20.
    Schmidt, A., Beigl, M., Gellersen, H.-W.: There is more to context than location: Environment sensing technologies for adaptive mobile user interfaces. In: Workshop on Interactive Applications of Mobile Computing (IMC) (1998),
  21. 21.
    Intille, S.S., Tapia, E.M., Larson, K.: Activity Recognition in the Home Using Simple and Ubiquitous Sensors. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004)Google Scholar
  22. 22.
    van Binsbergen, W.: Situation based services: The semantic extension of LBS. In: 3rd Twente Student Conference on IT (2005)Google Scholar
  23. 23.
    von Ahn, L.: Games with a purpose. IEEE Computer Magazine (June 2006)Google Scholar
  24. 24.
    Atkeson, C.G., Wilson, D.H.: Simultaneous Tracking and Activity Recognition (STAR) Using Many Anonymous, Binary Sensors. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 62–79. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Matthias C. Sala
    • 1
  • Kurt Partridge
    • 1
  • Linda Jacobson
    • 1
  • James “Bo” Begole
    • 1
  1. 1.Palo Alto Research Center (PARC), Computer Science Lab, 3333 Coyote Hill Road, Palo Alto, CA 94304USA

Personalised recommendations