Skip to main content

TrackSense: Infrastructure Free Precise Indoor Positioning Using Projected Patterns

  • Conference paper
Book cover Pervasive Computing (Pervasive 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4480))

Included in the following conference series:

Abstract

While commercial solutions for precise indoor positioning exist, they are costly and require installation of additional infrastructure, which limits opportunities for widespread adoption. Inspired by robotics techniques of Simultaneous Localization and Mapping (SLAM) and computer vision approaches using structured light patterns, we propose a self-contained solution to precise indoor positioning that requires no additional environmental infrastructure. Evaluation of our prototype, called TrackSense, indicates that such a system can deliver up to 4 cm accuracy with 3 cm precision in rooms up to five meters squared, as well as 2 degree accuracy and 1 degree precision on orientation. We explain the design and performance characteristics of our prototype and demonstrate a feasible miniaturization that supports applications that require a single device localizing itself in a space. We also discuss extensions to locate multiple devices and limitations of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Active Bat. The BAT Ultrasonic Location System (2006), http://www.uk.research.att.com/bat/

  2. Bahl, P., Padmanabhan, V.: RADAR: An In-Building RF-Based User Location and Tracking System. In: The Proc. of IEEE Infocom 2000, pp. 775–784. IEEE Press, Los Alamitos (2000)

    Google Scholar 

  3. Bouguet, J.Y., Perona, P.: 3D photography on your desk. In: ICCV’98, pp. 43–50 (1998)

    Google Scholar 

  4. Canny, J.: A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6) (1986)

    Google Scholar 

  5. Cao, X., Balakrishnan, R.: Interacting with dynamically defined information spaces using a handheld projector and a pen. In: Proc. of UIST 2006, pp. 225–234 (2006)

    Google Scholar 

  6. Cobzas, D., Sturm, P.: 3D SSD Tracking with Estimated 3D Planes. In the proc. In: Proc. of 2nd Canadian Conference on Computer and Robot Vision (CRV2005), pp. 129–134 (2005)

    Google Scholar 

  7. Davison, A., Cid, Y., Kita, N.: Real-Time 3D SLAM with Wide-Angle Vision. In: Proc. of IFAC Symposium on Intelligent Autonomous Vehicles (2004)

    Google Scholar 

  8. Dellaert, F., Tariq, S.: A Multi-Camera Pose Tracker for Assisting the Visually Impaired. In: 1st IEEE Workshop on Computer Vision Applications for the Visually Impaired (2005)

    Google Scholar 

  9. Dissanayake, M.W.M.G., et al.: A solution to the simultaneous localization and map building (slam) problem. IEEE Transactions on Robotics and Automation 17(3), 229–241 (2001)

    Article  Google Scholar 

  10. Fischler, M., Bolles, R.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  11. Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach. Prentice-Hall, Englewood Cliffs (2002)

    Google Scholar 

  12. Harle, R.K., Hopper, A.: Cluster Tagging: Robust Fiducial Tracking for Smart Environments. In: 2nd International Workshop on Location- and Context-Awareness, May 2006, pp. 14–29 (2006)

    Google Scholar 

  13. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge Press, Cambridge (2003)

    Google Scholar 

  14. Hightower, J., Borriello, G.: A Survey and Taxonomy of Location Systems for Ubiquitous Computing. University of Washington Tech. Report CSC-01-08-03 (2001)

    Google Scholar 

  15. Borriello, G., et al.: Place Lab: Device Positioning Using Radio Beacons in the Wild. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 116–133. Springer, Heidelberg (2005)

    Google Scholar 

  16. Kuhn, H.W.: The Hungarian Method for the assignment problem. Naval Research Logistic Quarterly (2), 83–97 (1955)

    Google Scholar 

  17. Lourakis, M.A., Argyros, A.A.: Vision-Based Camera Motion Recovery for Augmented Reality. In: Proc. of the Computer Graphics International (CGI 2004), pp. 569–576 (2004)

    Google Scholar 

  18. Liu, Y., Thrun, S.: Results for outdoor-SLAM using sparse extended information filters. In: Proc. of the IEEE International Conference on Robotics and Automation, pp. 1227–1233 (2003)

    Google Scholar 

  19. Madhavapeddy, A., Tse, A.: A Study of Bluetooth Propagation Using Accurate Indoor Location Mapping. In: Beigl, M., et al. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 105–122. Springer, Heidelberg (2005)

    Google Scholar 

  20. Munkres, J.: Algorithms for the Assignment and Transportation Problems. Journal of the Society of Industrial and Applied Mathematics 5(1), 32–38 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  21. NorthStar. Evolution Robitcs (2007), http://www.evolution.com/products/northstar/

  22. de Lara, E., et al.: Accurate GSM Indoor Localization. In: Beigl, M., et al. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 141–158. Springer, Heidelberg (2005)

    Google Scholar 

  23. Rekimoto, J., Abowd, G.D., Patel, S.N.: iCam: Precise at-a-Distance Interaction in the Physical Environment. In: Fishkin, K.P., et al. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 272–287. Springer, Heidelberg (2006)

    Google Scholar 

  24. Patel, S.N., Truong, K.N., Abowd, G.D.: PowerLine Positioning: A Practical Sub-Room-Level Indoor Location System for Domestic Use. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 441–458. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The Cricket Location-Support System. In: Proc. of Mobicom, Boston, MA (August 2000)

    Google Scholar 

  26. Rekimoto, J., Ayatsuka, Y.: CyberCode: Designing Augmented Reality Environments with Visual Tags. In: Proc. of DARE 2000, Elsinore, Denmark, pp. 1–10 (2000)

    Google Scholar 

  27. Rachmielowski, A., Cobzas, D., Jagersand, M.: Robust SSD tracking with incremental 3D structure estimation. In: Proc. of Canadian Conference on Computer and Robot Vision (CRV) (2006)

    Google Scholar 

  28. Rekimoto, J., Katashi, N.: The World through the Computer: Computer Augmented Interaction with Real World Environments. In: Proc. of UIST 1995, Pittsburgh, PA, pp. 29–36 (1995)

    Google Scholar 

  29. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: CVPR 2003, vol. 1, Madison, WI, June 2003, pp. 195–202 (2003)

    Google Scholar 

  30. Se, S., Lowe, D., Little, J.: Vision-Based Mobile Robot Localization and Mapping Using Scale-Invariant Features. In: Proc. of ICRA (2001)

    Google Scholar 

  31. Sukthankar, R., Stockton, R., Mullin, M.: Smarter Presentations: Exploiting Homography in Camera-Projector Systems. In: Proc. of ICCV (2001)

    Google Scholar 

  32. Sukthankar, R., Stockton, R., Mullin, M.: Automatic Keystone Correction for Camera-assisted Presentation Interfaces. In: Proc. of International Conference on Multimodal Interfaces (2000)

    Google Scholar 

  33. Tariq, S., Dellaert, F.: A Multi-Camera 6-DOF Pose Tracker. In: IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR), pp. 296–297 (2004)

    Google Scholar 

  34. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  35. Ubisense (2006), http://www.ubisense.net

  36. Vicon MX (2006), http://www.vicon.com/products/systems.html

  37. Want, R., et al.: The active badge location system. ACM Transactions on Information Systems 10, 91–102 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Anthony LaMarca Marc Langheinrich Khai N. Truong

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Köhler, M., Patel, S.N., Summet, J.W., Stuntebeck, E.P., Abowd, G.D. (2007). TrackSense: Infrastructure Free Precise Indoor Positioning Using Projected Patterns. In: LaMarca, A., Langheinrich, M., Truong, K.N. (eds) Pervasive Computing. Pervasive 2007. Lecture Notes in Computer Science, vol 4480. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72037-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72037-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72036-2

  • Online ISBN: 978-3-540-72037-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics