Skip to main content

Quantum Diffusion Models Derived from the Entropy Principle

  • Conference paper

Part of the book series: Mathematics in Industry ((TECMI,volume 12))

In this chapter, we review the recent theory of quantum diffusion models derived from the entropy minimization principle. These models are obtained by taking the moments of a collisional Wigner equation and closing the resulting system of equations by a quantum equilibrium. Such an equilibrium is defined as a minimizer of the quantum entropy subject to local constraints of given moments. We provide a framework to develop this minimization approach. The results of numerical simulations show that these models capture well the various features of quantum transport.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ancona, M. G., Diffusion-Drift modeling of strong inversion layers, COMPEL 6 11–18 (1987)

    Google Scholar 

  2. Ancona, M. G., Iafrate, G. J., Quantum correction of the equation of state of an electron gas in a semiconductor, Phys. review B, 39, 9536–9540 (1989)

    Article  Google Scholar 

  3. Ancona, M. G., Tiersten, H. F., Macroscopic physics of the silicon inversion layer, Phys. review B, 35, 7959–7965 (1987)

    Article  Google Scholar 

  4. Ben Abdallah, N., Degond, P., On a hierarchy of macroscopic models for semiconductors, J. Math. Phys., 37, 3306–3333 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ben Abdallah, N., Degond, P., Gnieys, S., An energy-transport model for semiconductors derived from the Boltzmann equation, J. Stat. Phys., 84, 205–231 (1996)

    Article  MATH  Google Scholar 

  6. Ben Abdallah, N., Unterreiter, A., On the stationary quantum drift-diffusion model, Z. Angew. Math. Phys., 49, 251–275 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Burghardt, I., Parlant, G., On the dynamics of coupled Bohmian and phasespace variables, a new hybrid quantum-classical approach, Journal of Chemical Physics, 120, 3055–3058 (2004)

    Article  Google Scholar 

  8. Chen, R-C., Liu, J-L., A quantum corrected energy-transport model for nanoscale semiconductor devices, J. Comput. Phys., 204, 131–156 (2005)

    Article  MATH  Google Scholar 

  9. Degond, P., Mathematical modelling of microelectronics semiconductor devices, AMS/IP Studies in Advanced Mathematics, AMS Society and International Press, 77–109, (2000)

    Google Scholar 

  10. Degond, P., Gallego, S., Mhats, F., An entropic quantum drift-diffusion model for electron transport in resonant tunneling diodes, J. Comp. Phys., to appear

    Google Scholar 

  11. Degond, P., Mhats, F., Ringhofer, C., Quantum energy-transport and driftdiffusion models, J. Stat. Phys., 118, 625–667 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Degond, P., Mhats, F., Ringhofer, C., Quantum hydrodynamic models derived from the entropy principle, Contemp. Math., 371, 107–131 (2005)

    Google Scholar 

  13. de Falco, C., Gatti, E., Lacaita, A. L., Sacco, R., Quantum-Corrected Drift-Diffusion Models for Transport in Semiconductor Devices, J. Comput. Phys., 204, 533–561 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gallego, S., Mhats, F., Entropic discretization of a quantum drift-diffusion model, SIAM J. Numer. Anal., 43, 1828–1849 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gallego, S., Mhats, F., Numerical approximation of a quantum drift-diffusion model, C. R. Math. Acad. Sci. Paris, 339, 519–524 (2004)

    MATH  MathSciNet  Google Scholar 

  16. Jngel, A., Pinnau, R., A positivity preserving numerical scheme for a fourth order parabolic equation, SIAM J. Num. Anal., 39, 385–406 (2001)

    Article  Google Scholar 

  17. Micheletti, S., Sacco, R., Simioni, P., Numerical Simulation of Resonant Tunnelling Diodes with a Quantum-Drift-Diffusion Model, Scientific Computing in Electrical Engineering, Lecture Notes in Computer Science, Springer-Verlag, pp. 313–321 (2004)

    Google Scholar 

  18. Pinnau, R., The Linearized Transient Quantum Drift Diffusion Model - Stability of Stationary States, Z. Angew. Math. Mech., 80, 327–344 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pinnau, R., Unterreiter, A., The Stationary Current-Voltage Characteristics of the Quantum Drift Diffusion Model, SIAM J. Numer. Anal., 37, 211–245 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pirovano, A., Lacaita, A., Spinelli, A., Two-Dimensional Quantum effects in Nanoscale MOSFETs, IEEE Trans. Electron Devices, 47, 25–31 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Degond, P., Gallego, S., Méhats, F., Ringhofer, C. (2008). Quantum Diffusion Models Derived from the Entropy Principle. In: Bonilla, L.L., Moscoso, M., Platero, G., Vega, J.M. (eds) Progress in Industrial Mathematics at ECMI 2006. Mathematics in Industry, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71992-2_6

Download citation

Publish with us

Policies and ethics