Skip to main content

Modeling of the HIV/AIDS Infection: An Aid for an Early Diagnosis of Patients

  • Chapter

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 357))

Abstract

Mathematical modeling is used for individual patients to help for an early diagnosis of the evolution of the infection. The feasibility of the method is depicted on some patients who start a HAART (Highly Active AntiRetroviral Therapy). It is shown how this mathematical study can be used in the early diagnosis of the immunological failure for HIV patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. M. Jeffrey. A control theoretic approach to HIV/AIDS drug dosage desing and timing the initiation of therapy. PhD thesis, University of Preotria, South Africa, July 2006.

    Google Scholar 

  2. R. Zurakowski and R. A. Teel. A model predictive control based scheduling method for HIV therapy. Journal of Theoretical Biology, pages 368–382, July 2006.

    Google Scholar 

  3. A. S. Perelson and P. W. Nelson. Mathematical analysis of HIV-1 dynamics in vivo. SIAM Review, 41(1):3–44, 1999.

    Article  MATH  Google Scholar 

  4. A. S. Perelson et al. Decay characteristics of HIV-1 infected compartment during combination therapy. Nature, 387:188–191, 1997.

    Article  Google Scholar 

  5. David D. Ho et al. Rapid turnover of plasma virion and CD4 lymphocytes in HIV-1 infection. Nature, 373:123–126, January 1995.

    Article  Google Scholar 

  6. Xiping Wei et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature, 373:117–122, January 1995.

    Article  Google Scholar 

  7. R. Arnaout, M. A. Nowak, and D. Wodarz. HIV-1 dynamics revisited: Biphasic decay by cytotoxic T lymphocyte killing. Proc. Royal Society, 267:1347–1354, 2000.

    Article  Google Scholar 

  8. R. A. Filter, X. Xia, and I. K. Gray. Dynamic HIV/AIDS parameter estimation with application to a vaccine readiness study in southern Africa. IEEE Transactions on Biomedical Engineering, 52(5):284–291, May 2005.

    Article  Google Scholar 

  9. M. A. Nowak and R. M. May. Virus dynamics: Mathematical principles of immunology and virology. Oxford University Press, 2002.

    Google Scholar 

  10. D. Kirschner and G. F. Webb. Understanding drug resistance for monotherapy treatment of HIV infection. Bulletin of Mathematical Biology, 59(4):763–785, 1997.

    Article  MATH  Google Scholar 

  11. D. A. Ouattara. Mathematical analysis of the HIV-1 infection: Parameter estimation, therapies effectiveness, and therapeutical failures. In 27th Annual International Conference of the IEEE Engineering in Medecine and Biology Society (EMBC’05), Shanghai, China, September 2005.

    Google Scholar 

  12. D. Wodarz et al. A new therory of cytotoxic T-lymphocyte memory: Implication for the HIV treatement. Phil. Trans. R. Soc. Lond., 355:329–343, 2000.

    Article  Google Scholar 

  13. X. Xia and C. H. Moog. Identifiability of nonlinear systems with application to HIV/AIDS models. IEEE Transactions on Automatic Control, 48(2):330–336, February 2003.

    Article  Google Scholar 

  14. Eric Walter. Identifiability of Parametric Models. Pergamon Press, London, U.K., 1987. Edited, Updated and Expanded papers of the 7th IFAC/IFCOR Symposium on Identification and System Parameter Estimation, July 1985 in York, England.

    MATH  Google Scholar 

  15. E. T. Tunali and T.-J. Tarn. New results for identifiability of nonlinear systems. IEEE Transactions on Automatic Control, AC-32(2):146–154, Febr. 1987.

    Article  Google Scholar 

  16. G. Conte, C. H. Moog, and A. M. Perdon. Nonlinear Control Systems. Springer-Verlag, London, U.K., 1999.

    MATH  Google Scholar 

  17. J. Kim, W. H. Kim, H. B. Chung, and C. C. Chung. Constant drug dose leading long-term non-progressor for HIV-infected patients with RTI and PI. In 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, Seville, Spain, December 2005.

    Google Scholar 

  18. D. Wodarz and M. A. Nowak. CD8 memory, immuonodominance, and antigenic escape. Eur. J. Immunol., 30:2704–2712, 2000.

    Article  Google Scholar 

  19. JF. Delfraissy. Prise en charge des personnes infectées par le VIH: Recommandations du groupe d’experts. Médecine Science, Paris, flammarion edition, 2004. Available at http://www.ladocumentationfrancaise.fr/brp/notices/044000467.shtml.

    Google Scholar 

  20. U.S. Dept. Health and Human Services. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents, May 2006. Available at http://www.aidsinfo.nih.gov/guidelines.

    Google Scholar 

  21. I. T. Prud’homme et al. Amplicor HIV Monitor, NASBA HIV-1 RNA QT and Quantiplex HIV RNA version 2.0 viral load assays: a Canadian evaluation. Journal of Clinical Virology, 11:189–202, 1998.

    Article  Google Scholar 

  22. A. Berger et al. Comparative evaluation of the COBAS Amplicor HIV-1 Monitor™ ultrasensitive test, the new COBAS AmpliPrep/COBAS Amplicor HIV-1 Monitor™ and the versant HIV RNA 3.0 assays for quantitation of HIV-1 RNA in plasma samples. Journal of Clinical Virology, 33:43–51, 2005.

    Article  Google Scholar 

  23. R. Galli, L. Merrick, M. Friesenhahn, and R. Ziermann. Comprehensive comparison of the Versant® HIV-1 RNA 3.0 (bDNA) and COBAS Amplicor HIV-1 Monitor® 1.5 assays on 1000 clinical specimens. Journal of Clinical Virology, 34:245–252, 2005.

    Article  Google Scholar 

  24. K. Israel-Ballard et al. Taqman rt-pcr and Versant® HIV-1 RNA 3.0 (bDNA) assay quantification of HIV-1 RNA viral load in breast milk. Journal of Clinical Virology, 34:253–256, 2005.

    Article  Google Scholar 

  25. Fiches Techniques de la Firme Roche. Available at http://www.roche-diagnostics.fr.

    Google Scholar 

  26. R. A. Filter and X. Xia. A penalty function to HIV/AIDS model parameter estimation. In 13th IFAC Symposium on System Identification, Rotterdam, 2003.

    Google Scholar 

  27. D. A. Ouattara, F. Bugnon, F. Raffi, and C. H. Moog. Parameter identification of an HIV/AIDS model. In 13th International Symposium on HIV and Emerging Infectious Diseases, Toulon, France, September 2004.

    Google Scholar 

  28. S. Nõmm. Realization and Identifiability of Discret-time Nonlinear Systems. PhD thesis, Tallinn University of Technology (Estonia), Ecole Centrale de Nantes (France), 2004. ISBN: 9985-59-440-1 / ISSN: 1406-4723.

    Google Scholar 

  29. D. A. Ouattara. Modélisation de l’infection par le VIH, identification et aide au diagnostic. PhD thesis, Ecole Centrale de Nantes & Université de Nantes, Nantes, France, September 2006.

    Google Scholar 

  30. IRCCyN Web software for the computation HIV infection parameters. Available at http://www.irccyn.ec-nantes.fr/hiv.

    Google Scholar 

  31. D. Kirschner, S. Lenhart, and S. Serbin. Optimal control of the chemotherapy of HIV. J. Math. Biol, 35:775–792, 1997.

    Article  MATH  Google Scholar 

  32. M. A. Jeffrey, X. Xia, and I. K. Graig. When to initiate HIV therapy: A control theoretic approach. IEEE Transactions on Biomedical Engineering, 50(11): 1213–1220, 2003.

    Article  Google Scholar 

  33. F. Biafore and C. E. D’Attellis. Exact linearisation and control of an HIV-1 predator-prey model. In 27th Annual International Conference of the IEEE Engineering in Medecine and Biology Society, Shanghai, China, September 2005.

    Google Scholar 

  34. D. A. Ouattara and C. H. Moog. Identification, linéarisation et commande optimale du modèle 3D de l’infection VIH-1. In Conférence International Francophone d’Autotmatique, CIFA 2006, Bordeaux, France, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ouattara, D.A., Moog, C.H. (2007). Modeling of the HIV/AIDS Infection: An Aid for an Early Diagnosis of Patients. In: Queinnec, I., Tarbouriech, S., Garcia, G., Niculescu, SI. (eds) Biology and Control Theory: Current Challenges. Lecture Notes in Control and Information Sciences, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71988-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71988-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71987-8

  • Online ISBN: 978-3-540-71988-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics