Model-Based Reasoning for Self-Repair of Autonomous Mobile Robots

  • Michael Hofbaur
  • Johannes KÖb
  • Gerald Steinbauer
  • Franz Wotawa
Part of the Studies in Computational Intelligence book series (SCI, volume 64)

Summary. Retaining functionality of a mobile robot in the presence of faults is of particular interest in autonomous robotics. From our experiences in robotics we know that hardware is one of the weak points in mobile robots. In this paper we present the foundations of a system that automatically monitors the driving device of a mobile robot. In case of a detected fault, e.g., a broken motor, the system automatically re-configures the robot in order to allow to reach a certain position. The described system is based on a generalized model of the motion hardware. The path-planner has only to change its behavior in case of a serious damage. The high-level control system remains the same. In the paper we present the model and the foundations of the diagnosis and re-configuration system.


Mobile Robot Hybrid Automaton Autonomous Mobile Robot Path Planner Admissible Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carlson, J., Murphy, R.: How UGVs physically fail in the field. IEEE Transac-tions on Robotics 21 (June 2005) 423-437CrossRefGoogle Scholar
  2. 2.
    Steinbauer, G., Faschinger, M., Fraser, G., Mühlenfeld, A., Richter, S., Wöber, G., Wolf, J.: Mostly Harmless Team Description. In: Proceedings of the International RoboCup Symposium. (2003)Google Scholar
  3. 3.
    Murphy, R.: Introduction to AI Robotics. MIT Press (2002)Google Scholar
  4. 4.
    Siegwart, R., Nourbakhsh, I.: Introduction to Autonomous Mobile Robots. MIT Press (2004)Google Scholar
  5. 5.
    Latombe, J.C.: Robot Motion Planning. Eight reprint edn. Kluwer Academic Publisher (2004)Google Scholar
  6. 6.
    Choset, H., Lynch, K., Hutchison, S., Kantor, G., Burgard, W., Kavarki, L., Thrun, S.: Principles of Robot Motion. Theory, Algorithms and Implementa-tions. MIT Press (2004)Google Scholar
  7. 7.
    Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32 (1987) 57-95zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Greiner, R., Smith, B., Wilkerson, R.: A correction to the algorithm in Reiter’s theory of diagnosis. Artificial Intelligence 41 (1989) 79-88zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Friedrich, G., Gottlob, G., Nejdl, W.: Hypothesis classification, abductive diag-nosis and therapy. In: Proceedings of the International Workshop on Expert Systems in Engineering, Vienna, Springer Verlag, Lecture Notes in Artificial Intelligence, Vo. 462 (1990)Google Scholar
  10. 10.
    Console, L., Dupré, D., Torasso, P.: On the relationship between abduction and deduction. Journal of Logic and Computation 1 (1991) 661-690zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Struss, P., Dressler, O.: Physical negation - Integrating fault models into the general diagnostic engine. In: International Joint Conference on Artificial Intelligence (IJCAI), Detroit (1989) 1318-1323Google Scholar
  12. 12.
    Friedrich, G., Gottlob, G., Nejdl, W.: Physical impossibility instead of fault models. In: National Conference on Artificial Intelligence (AAAI), Boston (1990) 331-336. Also appears in Readings in Model-Based Diagnosis (Morgan Kaufmann, 1992).Google Scholar
  13. 13.
    Hamscher, W., Console, L., de Kleer, J., eds.: Readings in Model-Based Diag-nosis. Morgan Kaufmann Publishers, Inc. (1992)Google Scholar
  14. 14.
    Hofbaur, M., Williams, B.: Mode estimation of probabilistic hybrid systems. In Tomlin, C., Greenstreet, M., eds.: Hybrid Systems: Computation and Control, HSCC 2002. Volume 2289 of Lecture Notes in Computer Science. Springer Verlag (2002) 253-266Google Scholar
  15. 15.
    Hofbaur, M.: Hybrid Estimation of Complex Systems. Volume 319 of Lecture Notes in Control and Information Sciences. Springer Verlag (2005)Google Scholar
  16. 16.
    Hofbaur, M., Wotawa, F.: A causal analysis method for concurrent hybrid automata. In: Proceedings of the 21st National Conference on Artificial Intelli-gence (AAAI-06). (2006) 840-846Google Scholar
  17. 17.
    Li, X., Bar-Shalom, Y.: Multiple-model estimation with variable structure. In: IEEE Trans. Automatic Control. Volume 41. (1996) 478-494Google Scholar
  18. 18.
    Köb, J.: Modellbasierte Regelung eines Roboterfahrwerkes. Master’s thesis, Institute for Automation and Control, Graz University of Technology (2005)Google Scholar
  19. 19.
    Williams et al., B.: Remote agent: To boldly go where no AI system has gone before. Artificial Intelligence 103 (1998) 5-48Google Scholar
  20. 20.
    Dearden, R., Clancy, D.: Particle filters for real-time fault detection in planetary rovers. In: Proceedings of the Thirteenth International Workshop on Principles of Diagnosis. (2002) 1-6Google Scholar
  21. 21.
    Verma, V., Gordon, G., Simmons, R., Thrun, S.: Real-time fault diagnosis. IEEE Robotics & Automation Magazine 11 (2004) 56-66CrossRefGoogle Scholar
  22. 22.
    Steinbauer, G., Wotawa, F.: Detecting and locating faults in the control soft-ware of autonomous mobile robots. In: 19th International Joint Conference on Artificial Intelligence (IJCAI-05), Edinburgh, UK (2005)Google Scholar
  23. 23.
    Stumptner, M., Wotawa, F.: Model-based reconfiguration. In: Proceedings Arti-ficial Intelligence in Design, Lisbon, Portugal (1998)Google Scholar
  24. 24.
    Anglano, C., Montani, S.: Achieving self-healing in autonomic software systems: A case-based approach. In Czap, H., Unland, R., Branki, C., Tianfield, H., eds.: Self-Organization and Autonomic Informatics (I). Volume 135 of Frontiers in Artificial Intelligence and Applications. IOS Press (2005) 267-281Google Scholar
  25. 25.
    Higuchi, T., Liu, Y., Yao, X., eds.: Evolvable Hardware. Springer (2006)Google Scholar
  26. 26.
    Sztipanovits, J., Karsai, G.: A model-based approach to self-adaptive software. IEEE Intelligent Systems 14 (1999) 46-53CrossRefGoogle Scholar
  27. 27.
    Friedrich, G., Stumptner, M., Wotawa, F.: Model-based diagnosis of hardware designs. Artificial Intelligence 111 (1999) 3-39zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Peischl, B., Wotawa, F.: Automated source level error localization in hardware designs. IEEE Design & Test of Computers 23 (2005) 8-9CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Michael Hofbaur
    • 1
  • Johannes KÖb
    • 1
  • Gerald Steinbauer
    • 2
  • Franz Wotawa
    • 2
  1. 1.Institute for Automation and ControlGraz University of TechnologyGrazAustria
  2. 2.Institute for Software TechnologyGraz University of TechnologyGrazAustria

Personalised recommendations