Sliding Mode Motion Control Strategies for Rigid Robot Manipulators

  • Antonella Ferrara
  • Lorenza Magnani
Part of the Studies in Computational Intelligence book series (SCI, volume 64)

Summary. The paper presents a new control method which achieves motion control for rigid robot manipulators. It is based on sliding mode control techniques and on the compensated inverse dynamics approach. The main advantages of using sliding mode control are robustness to parameter uncertainty, insensitivity to load disturbance, and fast dynamics response, as well as a remarkable computational simplicity with respect to other robust control approaches. Furthermore the proposed approach avoids the estimation of the time-varying inertia matrix. First order and second order sliding mode control laws are presented and in both cases the problem of chattering, typical of sliding mode control, is suitably circumvented. Some simulations results are reported demonstrating the good tracking properties and performances of the proposed control strategy.


Slide Mode Control Model Predictive Control Robot Manipulator Sliding Mode Inverse Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdallah, C., Dawson, D., Dorato, P., Jamshidi, M.: Survey of robust control of rigid robots. IEEE Contr. Syst. Mag. 11(2) (1991) 24-30CrossRefGoogle Scholar
  2. 2.
    Kuo, C.Y., Wang, S.: Nonlinear robust industrial robot control. ASME J. Dyn. Syst. Meas. Control 11 (1989) 24-30CrossRefGoogle Scholar
  3. 3.
    Juang, J.N., Eure, K.W.: Predictive Feedback and Feedforward Control for Sys-tems with Unknown Disturbance. NASA/Tm-1998-208744 (1998)Google Scholar
  4. 4.
    Perk, J.S., Han, G.S., Ahn, H.S., Kim, D.H.: Adaptive approaches on the sliding mode control of robot manipulators. Trans. Control, Autom. and Sys. Eng. 3(2) (2001) 15-20Google Scholar
  5. 5.
    Shyu, K.K., Chu., P.H., Shang, L.J.: Control of rigid manipulators via com-biantion of adaptive sliding mode control and compensated inverse dynamics approach. IEE Proc. Control Theory Appl. 143(3) (1996) 283-288zbMATHCrossRefGoogle Scholar
  6. 6.
    Adam, M.J.K.: Basics of robotics: Theory and components of manipulators and robots. Springer-Verlag, Berlin (1999)zbMATHGoogle Scholar
  7. 7.
    Asada, H., Slotine, J.J.E.: Robot Analysis and Control. Wiley, New York (1986)Google Scholar
  8. 8.
    Spong, M.W., Lewis, F.L., Abdallah, C.: Robot Control: Dynamics, Motion Planning, and Analysis. IEEE Press, New York (1993)zbMATHGoogle Scholar
  9. 9.
    Edwards, C., Spurgeon, S.K.: Sliding Mode Control: Theory and Applications. Taylor & Francis, U.K. (1998)Google Scholar
  10. 10.
    Utkin, V.I.: Sliding Modes in Control Optimization. Springer-Verlag, Berlin (1992)zbMATHGoogle Scholar
  11. 11.
    Ferrara, A., Magnani, L.: Motion control of rigid robot manipulators via first and second order sliding modes. J. Intell. and Robotic Sys. 48 (2007) 23-26CrossRefGoogle Scholar
  12. 12.
    Bartolini, G., Ferrara, A., Usai, E.: Chattering avoidance by second order sliding mode control. IEEE Trans. Automat. Contr. 43(3) (1998) 241-246zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Bartolini, G., Ferrara, A., Usai, E., Utkin, V.I.: On multi-input chattering-free second-order sliding mode control. IEEE Trans. Aut. Contr. 45(9) (2000) 1711-1717zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Antonella Ferrara
    • 1
  • Lorenza Magnani
    • 1
  1. 1.Department of Computer ScienceUniversity of PaviaPaviaItaly

Personalised recommendations