Advertisement

Adaptronic Systems in Biology and Medicine

  • Werner Nachtigall
  • Jörg-Uwe Meyer
  • Thomas Stieglitz

Abstract

Chapter 9 shows that the idea of adaptronics is also gaining a foothold in non-technical areas. Numerous analogies between biology and engineering are demonstrated with the muscle as a universal biological actuator. Medical applications comprise minimal invasive surgery and adaptive implants, where so-called neural interfaces are applied.

Keywords

Minimal Invasive Surgery Muscle Spindle Spinal Cord Stimulation Animal Kingdom Functional Electrical Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bourne, G.H. (ed.): The structure and function of muscle. 2nd. ed., 4 vols., Academic, New York, London (1973)Google Scholar
  2. 2.
    Gordon, A.M., Huxley, A.F. and Julian F.J.: The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. (Lond) 184:170 (1966)Google Scholar
  3. 3.
    Huddart, H.: Comparative structure and function of muscles. Pergamon, Oxford, London, New York, Toronto (1974)Google Scholar
  4. 4.
    Huxley, H.E.: The mechanism of muscular contraction. Science 164:1356 (1969)CrossRefGoogle Scholar
  5. 5.
    Huxley, A.F.: Muscular contraction. J. Physiol. (Lond) 243:1–43 (1974)Google Scholar
  6. 6.
    Irving, M., Lombardi, V., Piazzesi, G. and Ferenczi, M.A.: Myosin head movements are synchronous with the elementary force generating process in muscle. Nature (Lond) 357:156–158 (1992)CrossRefGoogle Scholar
  7. 7.
    Jewell, B.R., Wilkie, D.R.: The mechanical properties of relaxing muscle. J. Physiol. (Lond) 152:30–47 (1960)Google Scholar
  8. 8.
    Milligan, R.A., Flicker, P.F.: Structural relationships of actin and tropomyosin revealed by cryo-electronmicroscopy. J. Cell. Biol. 105:29–39 (1987)CrossRefGoogle Scholar
  9. 9.
    Nachtigall, W., Wilson, D.M.: Neuro-muscular control of Dipterian flight. J. Exp. Biol. 47 (1967) pp. 77–97Google Scholar
  10. 10.
    Nachtigall, W.: Insektenflug. Konstruktionsmorphologie, Biomechanik, Flugverhalten. Springer, Berlin (2003)Google Scholar
  11. 11.
    Phillips, G.N., Fillers, J.P. and Cohen, C.: Tropomyosin crystal structure and muscle regulation. J. Mol. Biol. 192:111–131 (1986)CrossRefGoogle Scholar
  12. 12.
    Reedy, M.K.: Myosin-actin motors. The partnership goes atomic. Structure 1:1–15 (1993)CrossRefGoogle Scholar
  13. 13.
    Rüegg, J.C.: Calcium in muscle contraction. 2nd. ed., Springer, Berlin Heidelberg New York (1992)Google Scholar
  14. 14.
    Usherwood, P.N.R.: Insect muscles. Academic, New York, London, San Francisco (1975)Google Scholar
  15. 15.
    Wilkie, D.R.: The relation between force and velocity in human muscle. J. Physiol. (Lond) 110:249–280 (1950)Google Scholar
  16. 16.
    Wilkie, D.R.: Muskel. Struktur und Funktion. B.G. Teubner, Stuttgart (1983)Google Scholar
  17. 17.
    Woodruff, E. A.: Clinical care of patients with closed-loop drug delivery systems. In: Biomed. Eng. Handbook, Bronzino, J. D. (ed.), Boca Raton, FL (USA), CRC and IEEE (1995), pp. 2447–2458Google Scholar
  18. 18.
    Sinkjaer, T., Haugland, M., Inmann, A., Hansen, M., Nielsen, K.D.: Biopotentials as Command and Feedback Signals in Functional Electrical Stimulation Systems. Med. Eng. Phys. 25(1) (2003), pp. 29–40CrossRefGoogle Scholar
  19. 19.
    Edell, D. J.: Tomorrows implantable electronic systems. Edell, D. J., Kuzma, J. and Petraitis, D. (eds), 18th Annual Int. Conf. IEEE EMBS, Minisymposia. IEEE. Amsterdam (1996), pp. 1–3Google Scholar
  20. 20.
    Schaldach, M.: Reestablishment of physiological regulation, a challenge to technology. In: Electrotherapy of the Heart, M. Schaldach (ed.), Berlin, Heidelberg: Springer-Verlag (1992), pp. 209–221Google Scholar
  21. 21.
    Cavuoto, J.: Neural Engineerings Image Problem. IEEE Spectrum, vol. 41, no. 4 (April 2004), pp. 20–25CrossRefGoogle Scholar
  22. 22.
    Stieglitz, T., Meyer, J.-U.: Neural Implants in Clinical Practice. In: Urban, G. A. (ed.) BIOMEMS, Dordrecht: Springer-Verlag (2006), pp. 41–70Google Scholar
  23. 23.
    Bolz, A., Urbaszek, W.: Technik in der Kardiologie: eine interdisziplinäre Darstellung für Ingenieure und Mediziner. Berlin, Heidelberg, New York, Springer-Verlag (2002)Google Scholar
  24. 24.
    Webster, J.G. (ed.): Design of cardiac pacemakers. Piscataway, NJ: IEEE (1995)Google Scholar
  25. 25.
    Hexamer, M., Drewes, C., Meine, M., Kloppe, A., Weckmüller, J., Mügge, A., Werner, J.: Rate-Responsive Pacing Using the Atrio-Ventricular Conduction Time: Design and Test of a New Algorithm. Med. Biol. Comp. 42 (2004), pp. 688–697CrossRefGoogle Scholar
  26. 26.
    Horch, K., Dhillon, G. (eds.): Neuroprosthetics: Theory and Practice. Series on Bioengineering and Biomedical Eng., Vol. 2, River Edge, London, Singapore: World Scientific (2004)Google Scholar
  27. 27.
    Stieglitz, T., Meyer, J.-U.: Biomedical Microdevices for Neural Implants. In: Urban, G. A. (Ed.), BIOMEMS, Dordrecht, Springer-Verlag (2006), pp. 71–138Google Scholar
  28. 28.
    Navarro, X., Krueger, T.B., Lago, N., Micera, S., Stieglitz, T., Dario, P.: A Critical Review of Interfaces with the Peripheral Nervous System for the Control of Neuroprostheses ad Hybrid Bionic Systems. J. Periph. Nerv. Sys., vol. 10 (2005), pp. 229–258CrossRefGoogle Scholar
  29. 29.
    Dhillon, G.S., Horch, K.W.: Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans. Neural. Sys. Rehabil. Eng., 13(4) (2005), pp. 468–472CrossRefGoogle Scholar
  30. 30.
    Stieglitz, T., Beutel, H., and Meyer, J.-U.: A flexible, light-weight multichannel sieve electrode with integrated cables for interfacing regenerating peripheral nerves. Sensors and Actuators A 60 (1997), pp. 240–243CrossRefGoogle Scholar
  31. 31.
    Lago, N., Ceballos, D., Rodríguez, F.J., Stieglitz, T., Navarro, X.: Long Term Assessment of Axonal Regeneration through Polyimide Regenerative Electrodes to Interface the Peripheral Nerve. Biomaterials, 26 (2005), pp. 2021–2031CrossRefGoogle Scholar
  32. 32.
    Navarro, X., Calvet, S., Rodríguez, F. J., Stieglitz, T., Blau, C., Butí, M., Valderrama, E., Meyer, J.-U.: Stimulation and Recording from Regenerated Peripheral Nerves through Polyimide Sieve Electrodes. J. Peripheral Nervous Sys. (3) 2 (1998), pp. 91–101Google Scholar
  33. 33.
    Rijkhoff, N.J.M.: Neuroprostheses to treat neurogenic bladder dysfunction: current status and future perspectives. Childs Nerv. Sys. 20 (2004), pp. 75–86CrossRefGoogle Scholar
  34. 34.
    Saigal, R., Rwnzi, C., Mushahwar, V.K.: Intraspinal Microstimulation generates functional movements after spinal-cord injury. IEEE Trans. Neural Sys. Rehab. Eng. 12 (4) (2004), pp. 430–440CrossRefGoogle Scholar
  35. 35.
    Trasher, A., Wang, F. and Andrews, B.: Self adaptive neuro-fuzzy control of neural prostheses using reinforcement learning pp. (CD-ROM version), 18. IEEE EMBS Conf.. IEEE. Amsterdam (1996)Google Scholar
  36. 36.
    Davoodi, R., Andrews, B.J.: Computer Simulation of FES Standing up in Paraplegia: a Self-Adaptive Fuzzy Controller with Reinforcement Learning. IEEE Trans Rehab. Eng. 6(2) (1998), pp. 151–161CrossRefGoogle Scholar
  37. 37.
    Jacobs, R.: Control model of human stance using fuzzy logic. Biol Cybern. 77(1) (1997), pp. 63–70CrossRefGoogle Scholar
  38. 38.
    Stieglitz, T., Beutel, H., Schüttler, M., Meyer, J.-U.: Micromachined, Polyimide-based Devices for Flexible Neural Interfaces. Biomedical Microdevices 2 (4) (2000), pp. 283–294CrossRefGoogle Scholar
  39. 39.
    Stieglitz, T., Koch, K.P., Schüttler, M: Flexible, Polyimide-Based Modular Implantable Biomedical Microsystems for Neural Prostheses. IEEE Eng. in Med. and Biology Magazine, vol. 24, no. 5 (2005), pp. 58–65CrossRefGoogle Scholar
  40. 40.
    Serruya, M.D., Hatsopoulos, N.G., Paninski, L., Fellows, M.R., Donoghue, J.P.: Instant neural control of a movement signal. Nature 416 (2002), pp. 141–142CrossRefGoogle Scholar
  41. 41.
    Patil, P.G., Carmena, J.M., Nicolelis, M.A., Turner, D.A.: Ensemble recordings of human subcortical neurons as a source of motor control signals for a brain-machine interface. Neurosurgery 55(1) (2004), pp. 27–38Google Scholar
  42. 42.
    Schwartz, A.B.: Cortical Neural Prosthetics. Annu. Rev. Neurosci. 27 (2004), pp. 487–507CrossRefGoogle Scholar
  43. 43.
    Veraart, C., Duret, F., Brelén, M., Oozeer, M., Delbeke, J.: Vision rehabilitation in the case of blindness. Expert Rev. Medical Devices 1(1) (2004), pp. 139–153CrossRefGoogle Scholar
  44. 44.
    Walter, P., Kisvárday, Z.F., Görtz, M., Alteheld, N., Rössler, G., Stieglitz, T., Eysel, U.T.: Cortical Activation with a Completely Implanted Wireless Retinal Prosthesis. Investigative Ophthalmology and Visual Science, vol. 46, no. 5 (2005), pp. 1780–1785CrossRefGoogle Scholar
  45. 45.
    Eckmiller, R.: Learning retina implants with epiretinal contacts. Ophthalmic Res., 29 (1997), pp. 281–289CrossRefGoogle Scholar
  46. 46.
    Flemming, E.: Tactile Sense in Minimal Invasive Surgery: The TAMIC-Project. mst news, vol. 19, VDI/VDE (February 1997), p. 13Google Scholar
  47. 47.
    Spencer, B.S.: Incorporating the sense of smell into patient and haptic surgical simulators. IEEE Trans. Inf. Technol. Biomed. 10(1) (2006), pp. 168–173CrossRefGoogle Scholar
  48. 48.
    Shung, K. K., Zipparo, M.: Ultrasonic transducers and arrays. IEEE Eng. in Medicine and Biology Magazine, vol. 15, no. 6, IEEE. New York (1996), pp. 20–30Google Scholar
  49. 49.
    Heyn, S. P.: Microsystem technologies and allied technologies in medicine: spotlights on recent activities in the USA, Canada, and Europe. mst news, Special Issue, VDI/VDE (June 96), pp. 134–139Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Werner Nachtigall
    • 1
  • Jörg-Uwe Meyer
    • 2
  • Thomas Stieglitz
    • 3
  1. 1.Universität des SaarlandesSaarbrückenGermany
  2. 2. Head of ResearchDrägerwerk AGLübeckGermany
  3. 3.Laboratory for Biomedical, Microtechnology, Department of Microsystems Engineering University of Freiburg IMTEKFreiburgGermany

Personalised recommendations