Sensors in Adaptronics

  • Neil M. White
  • Peter Boltryk
  • Wolfgang R. Habel
  • Raino Petricevic
  • Martin Gurka


Chapter 7 deals with sensors that can be applied advantageously in adaptronic structures. After explaining the connection between possible sensor solutions and the demands of adaptronics, the basic principles of fibre optic sensors and piezoelectric sensors are described. Diverse sensor variants and applications are presented with special attention on the integration of sensors in structures.


Fiber Bragg Grating Optic Sensor Lamb Wave Fiber Optic Sensor Piezoelectric Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brignell, J.E.: Quo vadis smart sensors? Sens. Actuators, A37–38 (1993), pp. 6–8Google Scholar
  2. 2.
    Brignell, J.E., White, N.M.: Intelligent sensor systems. Inst. Phys. Publishing, Bristol (1994)Google Scholar
  3. 3.
    Culler, D., Estrin, D., Srivastava, M.: Overview of sensor networks. IEEE Computer, 37(8) (2004), pp. 41–49Google Scholar
  4. 4.
    Brignell, J.E.: Digital compensation of sensors. J. Phys. E: Sci. Instrum., 10 (1987), pp. 1097–1102CrossRefGoogle Scholar
  5. 5.
    Brignell, J.E.: Sensors in distributed instrumentation systems. Sens. Actuators, 10 (1986), pp. 249–261CrossRefGoogle Scholar
  6. 6.
    Brignell, J.E., White, N.M. and Cranny, A.W.J.: Sensor applications of thick-film technology. IEE Proc. I, 135, (4) (1988), pp. 77–84Google Scholar
  7. 7.
    White, N.M., Brignell, J.E.: A planar, thick-film load cell. Sens. Actuators, 26, (1/3) (1991), pp. 313–319Google Scholar
  8. 8.
    White, N.M. and Brignell, J.E.: Excitation of thick-film resonant structures. IEE Proc.- Sci. Meas. Technol., 142, (3) (1995), pp. 244–248Google Scholar
  9. 9.
    Mark, J., Hufnagel, P.: The IEEE 1451.4 Standard for Smart Transducers (2004), available online from 1451d4_Standard_Genl_Tutorial _090104.docGoogle Scholar
  10. 10.
    Dunia, R., Qin, S.J., Edgar, T.F., McAvoy, T.J.: Identification of faulty sensors using principal component analysis. AIChE J., 42 (1996), pp. 2797–2812CrossRefGoogle Scholar
  11. 11.
    Markou, M., Singh, S.: A Review, Part I: Statistical Approaches, Signal Processing. Signal Processing, 83(12) (2003), pp. 2481–2497Google Scholar
  12. 12.
    Gertler, J.: Model based fault diagnosis. Control-theory and advanced technology, 9 (1) (1993), pp. 259–285Google Scholar
  13. 13.
    Chen, S., Wang, X.X., Brown, D.J.: Orthogonal least squares regression with tunable kernels. Electronics Letters, 41(8) (2005), pp. 484–486Google Scholar
  14. 14.
    Taner, A.H., Brignell, J.E.: Aspects of intelligent sensor reconfiguration. Sens. Actuators, A46–47 (1995), pp. 525–529Google Scholar
  15. 15.
    Taner, A.H., Brignell: The role of the graphical user interface in the development of intelligent sensor systems. Man-machine interfaces for instrumentation, IEE Digest No: 1995/175, 3/1–3/6 (1995)Google Scholar
  16. 16.
    Taner, A.H., Brignell, J.E.: Aspects of intelligent sensor reconfiguration. Actuators, A46–47 (1995), pp. 525–529Google Scholar
  17. 17.
    Taner, A.H., Brignell, J.E.: A graphical user interface for intelligent sensor ASIC reconfiguration. Proc. Sensors & their Applications VII, Dublin (10–13 Sept. 1995), pp. 365–369Google Scholar
  18. 18.
    Gardner, J.W., Bartlett, P.N. (eds): Sensors and sensory systems for an electronic nose. Kluwer Academic, Dordrecht (1992)Google Scholar
  19. 19.
    Rabaey, J.M., Ammer, M.J., da Silva Jr., J.L., Patel, D., Roundy, S.: PicoRadio supports ad hoc ultra-low power wireless networking. IEEE Computer, 33(7) (2000), pp. 42–48Google Scholar
  20. 20.
    Glynne-Jones, P., White, N.M.: Self-powered systems, a review of energy sources. Sensor Rev., 21 (2) (2001), pp. 91–97Google Scholar
  21. 21.
    Göpel, W. (ed.), et al.: Optical-Fiber Sensors. In: Sensors – A Comprehensive Survey, VCH (1992)Google Scholar
  22. 22.
    http://www.smartec.chGoogle Scholar
  23. 23.
    Habel, W.R.: Long-term monitoring of 4,500 kN rock anchors in the Eder gravity dam using fibre-optic sensors. Proc. Int. Symp. Geotechnical Measurements and Modelling, Balkema, ISBN 90 5809 603 3 (2003), pp. 347–354Google Scholar
  24. 24.
    Staszewski, W.J., Boller, C., Tomlinson, G.R.: Health Monitoring of Aerospace Structures – Smear Sensor Technologies and Signal Processing. Wiley (2004)Google Scholar
  25. 25.
    Frazao, O. et al.: Strain and Temperature Discrimination using a Hi-Bi Grating partially exposed to Chemical Etching. 17th Intern. Conf. on Optical Fibre Sensors (OFS-17), Bruges, Belgium, SPIE-Vol. 5855 (2005), pp. 755–758Google Scholar
  26. 26.
    http://www.fiso.comGoogle Scholar
  27. 27.
    Measures, R.M.: Structural Monitoring with fiber optic technology. Chapter 9.5, Academic. (2001)Google Scholar
  28. 28.
    Molter, M., Hegger, J., Habel, W.R. et al.: Characterization of Bond Performance of Textiles in Cement-Matrices Using Fiber-Optic Sensors. Int. Conf. on Smart Struct. and Mater. 2002. SPIE-Vol. 4694 (2002), pp. 253–258Google Scholar
  29. 29.
    Meltz, G., et al.: Formation of Bragg gratings in optical fibers by a transverse holographic method. Optics Lett. 14(1989)15, pp. 823–825Google Scholar
  30. 30.
    Lebid, S., Habel, W.R. and Daum, W.: How to reliably measure composite-embedded fibre Bragg grating sensors influenced by transverse and point-wise deformations Meas. Sci. Technol. 15(2004)8, pp. 1441–1447Google Scholar
  31. 31.
    Yun-Jiang Rao: Long-Period Fiber Gratings for Low-cost Sensing. 17th Int. Conf. on Optical Fibre Sensors (OFS-17), Bruges, Belgium, SPIE-Vol. 5855 (2005), pp. 13–16Google Scholar
  32. 32.
    James, S.W. and Tatam, R.P.: Optical fibre long-period grating sensors: characteristics and application. Meas. Sci. Technol. 14(2003), pp. R49-R61Google Scholar
  33. 33.
    Farahi, F.: Simultaneous Measurement of Strain and Temperature Using Fiber Grating Sensors. Proc. 11th Eng. Mechanics Conf. Fort Lauderdale, Conf. vol. 1 (1996), 351–354Google Scholar
  34. 34.
    Liu, T. et al.: Simultaneous Strain and Temperature Measurement Using a Combine Fibre Bragg Grating/Extrinsic Fabry-Perot Sensor. 12th Int. Conf. on Optical Fiber Sensors. Williamsburg, USA (1997), pp. 20–23Google Scholar
  35. 35.
    Habel, W. R., et al.: Deformation measurements of mortars at early ages and of large concrete components on site by means of embedded fiber optic microstrain sensors. Cement & Concrete Composites 19(1997)1, pp. 81–102Google Scholar
  36. 36.
    http://www.micronoptics.comGoogle Scholar
  37. 37.
    http://www.jenoptik.comGoogle Scholar
  38. 38.
    http://www.fos-s.beGoogle Scholar
  39. 39.
    López-Higuera, J.M. (Ed.): Handbook of Optical fibre Sensing technology. Wiley (2002)Google Scholar
  40. 40.
    Lloyd, G.D. et al.: Re-configurable, multi-channel, high-speed FBG strain sensing system for vibration analysis in oil risers. 17th Intern. Conf. on Optical Fibre Sensors (OFS-17), Bruges, Belgium, SPIE-Vol. 5855 (2005) pp. 218–221Google Scholar
  41. 41.
    http://www.aos-fiber.comGoogle Scholar
  42. 42.
    http://www.broptics.comGoogle Scholar
  43. 43.
    http://www.quasys.chGoogle Scholar
  44. 44. Scholar
  45. 45.
    Labs, J., Rose, K. and Werner, S.: Kopplung von optischen Komponenten. Me 7 (1993)1, Fachbeilage Mikrosystemtechnik (1993), pp. IV-VGoogle Scholar
  46. 46.
    Farahi, F.: Fiber Optic Sensors for Heat Transfer Studies. SPIE-Vol. 1584, pp. 53–61Google Scholar
  47. 47.
    Wang, A., et al.: Sapphire optical fiber-based interferometer for high temperature environmental applications. Smart Mater. & Struct. 4(1995), pp. 147–151Google Scholar
  48. 48.
    Yibing Zhangö, et al.: Single-crystal sapphire-based optical high-temperature sensor for harsh environments. Opt. Eng. 43 (2004)1, pp. 157–164Google Scholar
  49. 49.
    Grosswig, S., et al.: Pipeline leakage detection using distributed fibre optical temperature sensing. 17th Int. Conf. on Optical Fibre Sensors (OFS-17), Bruges, Belgium, SPIE-Vol. 5855 (2005), pp. 226–229Google Scholar
  50. 50.
    Inaudi, D., Glisic, B: Development of distributed strain and temperature sensing cables. 17th Int. Conf. on Optical Fiber Sensors (OFS-17). SPIE-Vol. 5855 (2005), pp. 222–225Google Scholar
  51. 51.
    Yeo, T.L., et al.: Fibre-Optic Sensor for the Monitoring of Moisture Ingress and Porosity of Concrete. 17th Int. Conf. on Optical Fibre Sensors (OFS-17), Bruges, Belgium, SPIE-Vol. 5855 (2005), pp. 491–494Google Scholar
  52. 52.
    Kunzler, W., Calvert, S. and Laylor, M.: Implementing fiber optic sensors to monitor humidity and moisture. Int. Conf. on Smart Struct. and Mater. 2004. SPIE-Vol. 5384 (2004), pp. 54–63Google Scholar
  53. 53.
    Kronenberg, P., Rastogi, P.K.: Relative humidity sensor with optical fiber Bragg gratings. Optics Lett. 27(2002)16, pp. 1385–1387Google Scholar
  54. 54.
    Khay Ming Tan, et al.: High relative humidity sensing using gelatin-coated long period grating. 17th Int. Conf. on Optical Fiber Sensors. SPIE-Vol. 5855 (2005), pp. 375–378Google Scholar
  55. 55.
    Dantan, N., Habel, W.R., Wolfbeis, O.S.: Fiber optic pH sensor for early detection of danger of corrosion in steel-reinforced concrete structures. Int. Conf. on Smart Struct. and Mater. 2005. SPIE-Vol. 5758 (2005), pp. 274–284Google Scholar
  56. 56.
    Bürck, J.M., et al.: Distributed fiber optical HC leakage and pH sensing techniques for implementation into smart structures. Int. Conf. on Smart Struct. and Mater. 2004. SPIE-Vol. 5384 (2004), pp. 1–12Google Scholar
  57. 57.
    Habel, W.R., Krebber, K. et al.: Fibre Bragg Grating Sensors to Monitor the Rotor Blades of Wind Turbines – Criteria and Method to put them to the Best Possible Use. 7th German Wind Energy Conf. DEWEK 2004 (CD-ROM), Wilhelmshaven (2004)Google Scholar
  58. 58.
    Habel, W.R. and Bismarck, A.: Optimization of the adhesion of fiber-optic strain sensors embedded in cement matrices; a study into long-term fiber strength. J. Structural Control 7(2000)1, pp. 51–76Google Scholar
  59. 59.
    Berghmans, F.: Reliability of Components for Fiber Optic Sensors. Int. Conf. on Smart Struct. and Mater. 2005. SPIE-Vol. 5758 (2005), pp. 417–426Google Scholar
  60. 60.
    Habel, W.R.: Fiber optic sensors for deformation measurement: criteria and method to put them to the best possible use. Int. Conf. on Smart Struct. and Mater. 2004. SPIE-Vol. 5384 (2004), pp. 158–168Google Scholar
  61. 61.
    Habel, W.R.: Stability and Reliability of fiber-optic Measurement Systems – Basic Conditions for Successful Long-Term Structural Health Monitoring. In: F. Ansari (Ed.): Sensing Issues in Civil Structural Health Monitoring. Springer (2005), pp. 341–351Google Scholar
  62. 62.
    Culshaw, B., Habel, W.R.: Fibre sensing: Specifying components and systems. Symp. on Optical Fiber Measurements SOFM 2004, Session X: Fiber Bragg gratings and fiber sensors. Boulder, Colorado, USA, September 28–30 (2004)Google Scholar
  63. 63.
    DIN EN ISO/IEC 17025:2000 (trilingual version): General requirements for the competence of testing and calibration laboratories Google Scholar
  64. 64.
    Internal information from Dr. Krebber and Dr. Trappe, Federal Institute for Materials Research and Testing (BAM) Berlin, (Winter 2005)Google Scholar
  65. 65.
    Krebber, K., Habel, W.R., et al.: Fiber Bragg grating sensors for monitoring of wind turbine blades. 17th Int. Conf. on Optical Fibre Sensors (OFS-17), Bruges, Belgium, SPIE-Vol. 5855 (2005), pp. 1036–1039Google Scholar
  66. 66.
    Park, H.S., Thursby, G. and Culshaw, B.: High-frequency acoustic detector based on fiber Fabry-Perot interferometer. 2nd Europ. Workshop on Optical Fibre Sensors, Santander, Spain 2004. SPIE-Vol. 5502 (2004), pp. 213–216Google Scholar
  67. 67.
    Habel, W.R., Hofmann, D., et al.: High-performance Concrete – Lime Optimization with Fiber Optic Sensors. 14th Eng. Mechanics Conf. (CD-ROM). Austin, Texas/US (2000)Google Scholar
  68. 68.
    Hillemeier, B., Scheel, H., Habel, W.R.: Enhancing Durability of Structures by Monitoring Strain and Cracking Behavior. In: F. Ansari (Ed.): Sensing Issues in Civil Structural Health Monitoring. Springer (2005). pp. 155–164Google Scholar
  69. 69.
    Pinet, E., Pham, A. and Rioux, S.: Miniature Fiber Optic Pressure Sensor for Medical Applications: an Opportunity for Intra-Aortic Balloon Pumping (IABP) therapy. 17th Int. Conf. on Optical Fibre Sensors (OFS-17), Bruges, Belgium, SPIE-Vol. 5855 (2005), pp. 234–237Google Scholar
  70. 70.
    http://www.samba.seGoogle Scholar
  71. 71.
    Glötzl, R., Hofmann, D., Basedau, F., Habel, W.R.: Geotechnical Pressure Cell Using a Long-Term Reliable High-Precision Fibre Optic Sensor Head. Int. Conf. on Smart Struct. and Mater. 2005. SPIE-Vol. 5758 (2005), pp. 248–253Google Scholar
  72. 72.
    Roger, A.J., Shatalin, S.V. and Kanellopoulos, S.E.: Distributed Measurement of Flow Pressure via Optical-fibre Backscatter Polarimetry. 17th Int. Conf. on Optical Fibre Sensors (OFS-17), Bruges, Belgium, SPIE-Vol. 5855 (2005), pp. 230–233Google Scholar
  73. 73.
    Campbell, M., et al.: Optimisation of Hi-birefringence Fibre Based Distributed Force Sensors. Smart Struct.: Optical Instrumentation and Sensing Systems Conf. 1995, SPIE-vol. 2509 (1995), pp. 57–63Google Scholar
  74. 74.
    Installation, use and repair of fibre optic sensors. Design manual. ISIS-M02–00, Canada, 2001Google Scholar
  75. 75.
    http://www.cost270.comGoogle Scholar
  76. 76. Scholar
  77. 77. Scholar
  78. 78.
    Kalymnios, D.: Plastic Optical Fibres (POF) in sensing – current status and prospects. 17th Int. Conf. on Optical Fibre Sensors (OFS-17), Bruges, Belgium, SPIE-Vol. 5855 (2005), pp. 1–4Google Scholar
  79. 79.
    Pagnoux, D. et al.: Microstructured fibers for sensing applications. 17th Int. Conf. on Optical Fibre Sensors (OFS-17), Bruges, Belgium, SPIE-Vol. 5855 (2005), pp. 5–8Google Scholar
  80. 80.
    Wehrspohn, R.B., et al.: Photonic crystal gas sensors. 17th Int. Conf. on Optical Fibre Sensors (OFS-17), Bruges, Belgium, SPIE-Vol. 5855 (2005), pp. 24–29Google Scholar
  81. 81.
    Lehmann, H., et al.: Toward photonic crystal fiber based distributed chemosensors. 17th Int. Conf. on Optical Fibre Sensors (OFS-17), Bruges, Belgium, SPIE-Vol. 5855 (2005), pp. 419–422Google Scholar
  82. 82.
    Bjarklev, A., et al.: Photonic crystal structures in sensing technology. 2nd Europ. Workshop on Optical Fibre Sensors, Santander, Spain, SPIE-Vol. 5502 (2004), pp. 9–16Google Scholar
  83. 83.
    Zhi Wang, et al.: Properties of PCF-based long period gratings. 17th Int. Conf. on Optical Fibre Sensors (OFS-17), Bruges, Belgium, SPIE-Vol. 5855 (2005), pp. 298–301Google Scholar
  84. 84.
    Sirohi, J., Chopra, I.: Fundamental understanding of piezoelectric strain sensors. Proc. SPIE – Int. Soc. Optical Eng., Vol. 3668 (1999), pp. 528–542Google Scholar
  85. 85.
    Tressler, J.F., Alkoy, S. and Newnham, R.E.: Piezoelectric sensors and sensor materials. J. Electroceramics, 2 (4) (1998), pp. 257–272Google Scholar
  86. 86.
    Newnham, R.E., Skinner, D.P. and Cross, L.E.: Connectivity and Piezoelectric-Pyroelectric Composites. Mat. Res. Bull. 13 (1978), pp. 525–536CrossRefGoogle Scholar
  87. 87.
    Petricevic, R., Gurka, M.: High performance piezoelectric composites. European Space Agency, Special Publication, ESA SP (2005), pp. 763–767Google Scholar
  88. 88.
    Wilkie, W.K., Bryant, R.G., High, J.W., et al.: Low-cost piezocomposite actuator for structural control applications. Proc. SPIE – Int. Soc. Opt. Eng., Vol. 3991 (2000), pp. 323–334Google Scholar
  89. 89.
    Janos, B.Z., Hagood, N.W.: Overview of Active Fiber Composites Technologies. Proc. 6th Int. Conf. New Actuators, Bremen, Germany (17–19 June 1998), pp. 193–197Google Scholar
  90. 90.
    Jaffe, B.: Piezoelectric Ceramics. Non-Metallic Solids. Ed. J.P. Roberts. Vol. 3. 1971, The University , Leeds, England: Academic, London and New York (1971)Google Scholar
  91. 91.
    Ruschmeyer, K., Koch, J., Lubitz, K., Schönecker, A., Helke, G., Petersen, A., Möckel, T. and Riedel, M.: Piezokeramik. Expert Verlag (1995)Google Scholar
  92. 92.
    Xu, Y.: Ferroelectric Materials and Their Applications. University of California Los Angeles, CA, USA: Elsevier, North Holland (1991)Google Scholar
  93. 93.
    Hagood, N.W., Bent, A.A.: Development of piezoelectric fiber composites for structural actuation. Collection of Technical Papers – AIAA/ASME Structures, Structural Dynamics and Mater. Conf. (1993), pp. 3625–3638Google Scholar
  94. 94.
    Bent, A.A., Hagood, N.W. and Rodgers, J.P.: Anisotropic actuation with piezoelectric fiber composites. J. Intelligent Mater. Systems and Structures, 6(3) (1995), pp. 338–349Google Scholar
  95. 95.
    Bent, A.A., Hagood, N.W.: Improved performance in piezoelectric fiber composites using interdigitated electrodes. Proc. SPIE – Int. Soc. Optical Eng., Vol. 2441 (1995), pp. 196–212Google Scholar
  96. 96.
    Bent, A.A., Hagood, N.W.: Piezoelectric fiber composites with interdigitated electrodes. J. Intelligent Mater. Systems and Structures, 8(11) (1997), pp. 903–919Google Scholar
  97. 97.
    Williams, R.B., Grimsley, B.W., Inman, D.J., Wilkie, W.K.: Manufacturing and mechanics-based characterization of macro fiber composite actuators. Amer. Soc. Mech. Engineers, Aerospace Division (Publication) AD, Vol. 67 (2002), pp. 79–89Google Scholar
  98. 98.
    Petricevic, R., Gurka, M.: Extremely Robust Piezoelectric Actuator Patches – Properties and Applications. Proc. 10th Int. Conf. New Actuators, Bremen, Germany (14–16 June 2006), pp. 62–65Google Scholar
  99. 99.
    Trolier-Mckinstry, S. and Muralt, P.: Thin film piezoelectrics for MEMS. J. Electroceramics, 12(1–2) (2004), pp. 7–17Google Scholar
  100. 100.
    Chopra, I.: Review of state of art of smart structures and integrated systems. AIAA J., 40(11) (2002), pp. 2145–2187Google Scholar
  101. 101.
    Giurgiutiu, V., Zagrai, A.N.: Characterization of piezoelectric wafer active sensors. J. Intell. Mater. Sys. and Structures, 11(12) (2000), pp. 959–976Google Scholar
  102. 102.
    Krautkramer, J., Krautkramer, H.: Ultrasonic Testing of Materials. Springer-Verlag, Berlin (1990)Google Scholar
  103. 103.
    Giurgiutiu, V., Cuc, A.: Embedded non-destructive evaluation for structural health monitoring, damage detection, and failure prevention. Shock and Vibration Digest, 37(2) (2005), pp. 83–105Google Scholar
  104. 104.
    Blitz, J., Simpson, G.: Ultrasonic Methods of Non-destructive Testing. Springer-Verlag, Berlin (2005)Google Scholar
  105. 105.
    Giurgiutiu, V., Zagrai, A.: Damage detection in simulated aging-aircraft panels using the electro-mechanical impedance technique. Amer. Soc. Mech. Engineers, Aerospace Division (Publication) AD, Vol. 60 (2000), pp. 349–358Google Scholar
  106. 106.
    Elspass, J., Flemming, M.: Aktive Funktionsbauweise. Springer-Verlag, Berlin (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Neil M. White
    • 1
  • Peter Boltryk
    • 1
  • Wolfgang R. Habel
    • 2
  • Raino Petricevic
    • 3
  • Martin Gurka
    • 3
  1. 1.School of Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUnited Kingdom
  2. 2.Fachgruppe VIII.1: Mess- und PrüftechnikBundesanstalt für Materialforschung und -prüfung (BAM)BerlinLand
  3. 3.Neue Materialien Würzburg GmbHWürzburgGermany

Personalised recommendations