Advertisement

Actuators in Adaptronics

  • Hartmut Janocha
  • Ronan Leletty
  • Frank Claeyssen
  • Goran Engdahl
  • Jürgen Hesselbach
  • William A. Bulloug
  • J. David Carlson
  • A. Mazzoldi
  • Federico Carpi
  • Danilo de Rossi
  • Helmut Seidel
  • Klaus Kuhnen
  • Thomas Würtz
Chapter

Abstract

The device and application portion of the book begins with chapter 6. Most of the actuators presented here belong to the group of unconventional actuators and are based on the transducer properties of new or improved materials. So-called self-sensing actuators can be implemented on the basis of multifunctional materials. The chapter concludes with amplifier concepts for driving energy transducers, an often neglected sub-area of actuation.

Keywords

Shape Memory Alloy Piezoelectric Actuator Ionic Polymer Metal Composite Dielectric Elastomer Piezo Actuator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Janocha, H. (ed.): Actuators – Basics and Applications. Springer-Verlag, Berlin Heidelberg, New York (2004)Google Scholar
  2. 2.
    Schwinn, A.: Aktive Vibrationsdämpfung mit verteilten Aktoren. PhD Thesis, Saarland University, Germany (2004)Google Scholar
  3. 3.
    Product information, ANSYS: ANSYS 6.1 Full Set of Analysis Guides. Canonsburg, PA (2002), www.ansys.comGoogle Scholar
  4. 4.
    Product information, The Math Works: User’s Guide. Natick, MA (1988–1998), www.mathworks.comGoogle Scholar
  5. 5.
    Janocha, H. (Ed.): Actuators – Basics and Applications. Springer-Verlag, Berlin Heidelberg New York (2004)Google Scholar
  6. 6.
    Koch, J.: Piezoxide (PXE) – Eigenschaften und Anwendungen. Dr. Alfred Hüthig Verlag, Heidelberg (1988)Google Scholar
  7. 7.
  8. 8.
    www.noliac.comGoogle Scholar
  9. 9.
    Uchino, K.: Ferroelectrics devices. Marcel Dekker, New York Basel (2000)Google Scholar
  10. 10.
    www.cedrat.comGoogle Scholar
  11. 11.
    Wirkungsgradoptimierte Piezoantriebe für hochdynamische Anwendungen in der Flugzeughydraulik (Piezoserv). Joint project funded by the German Federal Ministry of Education and Research (BMBF), 16SV563, www.tib.uni-hannover.deGoogle Scholar
  12. 12.
    Sashida, T., Kenjo, T.: An introduction to ultrasonic motors. Oxford: Clarendon Press, vol. 28, Monographs in Electrical and Electronic Engineering (1993), 242p.Google Scholar
  13. 13.
    www.elliptec.comGoogle Scholar
  14. 14.
    www.exfo.comGoogle Scholar
  15. 15.
    Six, M.F., Le Letty, R., Coste, P., Claeyssen, F.: Rotating step by step piezomotor for nanopositioning and space applications. Proc. 10th Conf. Actuator, Bremen (2006), pp. 353–356Google Scholar
  16. 16.
    Kuhnen, K., Janocha, H.: Compensation of the creep and hysteresis of piezoelectric actuators with inverse systems. Proc. 6th Conf. Actuator, Bremen (1998), pp. 309–312Google Scholar
  17. 17.
    Le Letty, R. (et al.): Piezoelectric actuators for active optics. Proc. Conf. ICSO (2004), pp. 717–720Google Scholar
  18. 18.
    Preumont, A.: Vibration control of active structures, an introduction. Kluwer (February 2002), ISBN 1-4020-0496-6Google Scholar
  19. 19.
    Sosnicki, O. (et al.): Active damping of vibrations applied on ski structures. Proc. 10th Conf. Actuator, Bremen (2006), pp. 932–935Google Scholar
  20. 20.
    Sosnicki, O. (et al.): Vibration energy harvesting in aircraft using piezoactuators. Proc. 10th Conf. Actuator, Bremen (2006), pp. 968–971Google Scholar
  21. 21.
    Bozorth, R.M.: Ferromagnetism. 2nd, Van Nostrand, NY (1951), p. 980Google Scholar
  22. 22.
    De Lacheisserie, E.: Magnetostriction: Theory and applications. CRC, USA (1993), p. 410Google Scholar
  23. 23.
    Clark A.E.: Magnetostrictive rare earth-Fe 2 compounds, Ferromagnetic materials. E.P. Wohlfarth, US, Tome 1 (1980), pp. 531–588Google Scholar
  24. 24.
    Verhoeven, J.D.: The effect of composition and magnetic heat treatment on the magnetostriction of TbDyFe twinned single crystals. J. Appl. Phys. 66(2) (1989). pp. 772–779Google Scholar
  25. 25.
    Sandlund, L.: Magnetostrictive powder composite with high frequency performance. Proc. 3rd Int. Workshop on Power Transducers for Sonics and Ultrasonics, Springer, Fl., May 6–8, (1992), pp. 113–120Google Scholar
  26. 26.
    Quandt, E.: Magnetostrictive thin film actuators. Proc. Actuator 94, Axon, Bremen, Germany (1994), pp. 229–232Google Scholar
  27. 27.
    Claeyssen, F.: Giant dynamic magnetostrain in rare earth-iron magnetostrictive materials. IEEE Trans. MAG.27, N 6, Nov.1991, pp. 5343–5345Google Scholar
  28. 28.
    Moffett, M.B.: Characterization of Terfenol-D for magnetostrictive transducers. JASA, 89 (3) (1991), pp. 1448–1455Google Scholar
  29. 29.
    Kvarnsjö, L.: On characterisation, modelling and application of highly magnetostrictive materials. Doct. Thesis TRITA-EEA-9301, ISSN 1100-1593 (1993), p. 173Google Scholar
  30. 30.
    Body, C.: Non linear finite element modelling of magneto-mechanical phenomenon in giant magnetostrictive thin films. Proc. CEFC 1996Google Scholar
  31. 31.
    Engdahl, G.: Loss simulations in magnetostriction actuators. J. Appl. Phys. 79 (8) (1996)Google Scholar
  32. 32.
    ATILA – a 3D CAD software for piezoelectric and magnetostrictive structures. ISEN, Lille (F), Distr. CEDRAT, Meylan (F) & MAGSOFT, Troy New York (US)Google Scholar
  33. 33.
    Debus, J.C.: Finite element modeling of PMN electrostrictive materials. Proc. Int. Conf. on Intelligent Materials, ICIM96-ECSSM96, SPIE vol. 2779, Lyon, France (1996), pp. 913–916Google Scholar
  34. 34.
    Claeyssen, F.: Design and building of low-frequency sonar transducers based on rare earth iron magnetostrictive alloys. Doct. Thesis, Defence Research Inform. Cent. HSMO, MoD, London, also Conception et réalisation de transducteurs sonar basse fréquence à base d’alliages magnétostrictifs Terres Rares-Fer. Thèse INSA Lyon (1989), p. 414Google Scholar
  35. 35.
    Claeyssen, F.: Modeling and characterization of the magnetostrictive coupling. Proc. 2nd Int. Workshop on Power Transducers for Sonics and Ultrasonics, Springer (1990), pp. 132–151Google Scholar
  36. 36.
    Claeyssen, F.: Giant Magnetostrictive Alloys Actuators. Proc. Magnetoelastic Effects and Applications Conf. L.Lanotte, Pub. Elsevier, Holland, 1993, pp. 153–159, or J. Appl. Electromagnetics in Mater. 5 (1994) pp. 67–73Google Scholar
  37. 37.
    Bouchilloux, P.: Dynamic Shear Characterization in a Magnetostrictive Rare Earth-Iron Alloy. M.R.S. Symp. Proc., Vol. 360 (1994), pp. 265–272Google Scholar
  38. 38.
    Bossut, R.: Finite element modeling of magnetostrictive transducers using Atila. Proc. ATILA Joint Conf. 2nd Int. Workshop on Power Transducers for Sonics and Ultrasonics, B.F. Hamonic, Isen, Lille, France (1990), pp. 19–26Google Scholar
  39. 39.
    Claeyssen, F.: Progress in magnetostrictive sonar transducers. Proc. UDT93, Reed Exhib. UK (1993), pp. 246–250Google Scholar
  40. 40.
    Le Letty, R.: Combined finite element – normal mode expansion methods for ultrasonic motor modeling. IEEE Ultrasonic Symp., Proc. (1994), pp. 531–534Google Scholar
  41. 41.
    Claeyssen, F.: Analysis of magnetostrictive Inchworm motors using f.e.m. Proc. Magnetoelastic Effects and Applications Conf. L.Lanotte, Pub. Elsevier, Holland (1993), pp. 161–167Google Scholar
  42. 42.
    Claeyssen, F.: State of the art in the field of magnetostrictive actuators. Proc. Actuator 94 Conf., Axon, Bremen, Gemany (1994), pp. 203–209Google Scholar
  43. 43.
    ETREMA Terfenol-D Magnetostrictive Actuators Information. Etrema Products, USA (1993), p. 6Google Scholar
  44. 44.
    Eda, H.: Ultra precise machine tool with GMA. Annals of the CIRP Vol. 41/1 (1992), pp. 421–424Google Scholar
  45. 45.
    Wang, W.: A high precision micropositioner based on magnetostriction principle. Rev. Sci. Inst. 63 (1) Jan. 1992, pp. 249–254Google Scholar
  46. 46.
    Cedell, T.: New magnetostrictive alloy for rapid conversion of electric energy to mechanical motion. Proc. Actuators 90, Axon, Bremen, Germany (1990), pp. 156–161Google Scholar
  47. 47.
    Suzuki, K.: Magnetostrictive plunger pump. Int. Symp. on GMA&A, Japan, Poster 5 (1992), p. 6Google Scholar
  48. 48.
    Hiller, M.W.: Attenuation and transformation of vibration through active control of magnetostrictive Terfenol. J. Sound Vib., 133(3), Pap. 364/1 (1989), p. 13Google Scholar
  49. 49.
    Janocha, H.: Design criteria for the application of solid state actuators. Proc. Actuator 94 Conf., Axon, Bremen, Germany (1994), pp. 246–250Google Scholar
  50. 50.
    Giurgiutiu, V.: Solid-state Actuation of Rotor Blade Servo-Flap for Active Vibration Control. J. Int. Mat. Systems and Structures, vol. 7 (1996), pp. 192–202Google Scholar
  51. 51.
    Lhermet, N.: Actuators based on biased magnetostrictive rare earth-iron alloys. Proc. Actuator 92, Axon, Bremen, Germany (1992), pp. 133–137Google Scholar
  52. 52.
    FLUX2D – a 2D CAD software for electric engineering. LEG, Grenoble (F), Distr. CEDRAT, Meylan (F) & MAGSOFT, Troy NY (US)Google Scholar
  53. 53.
    Claeyssen, F.: Design of Lanthanide magnetostrictive sonar projectors. Proc. UDT91, Microwave Exh.&Pub. (1991), pp. 1059–1065Google Scholar
  54. 54.
    Moffett, M.B.: Comparison of Terfenol-D and PZT4 power limitations. J. Acoust. Soc. Am. 90 (2), Letters to editor, August 1991, pp. 1184–1185Google Scholar
  55. 55.
    Jones, D.F.: Recent transduction developments in Canada and US. Sonar Transducers Conf., Proc. Inst. of Acoustics, Univ. of Bath, UK, Vol. 17, Pt 3 (1995), pp. 100–106Google Scholar
  56. 56.
    Wise, R.J.: Ultrasonic welding of plastics by a Terfenol driven magnetostrictive transducer. Proc. 3rd Conf. on Welding and Adhesive Bonding of Plastic, Düsseldorf, Nov. 1992, pp. 10–12Google Scholar
  57. 57.
    Dubus, B.: Low Frequency Magnetostrictive Projectors for Oceanography and Sonar. Proc. 3rd Europ. Conf. on Underwater Acoustics (1996), pp. 1019–1024Google Scholar
  58. 58.
    Kiesewetter, L.: Terfenol in linear motor. Proc. 2nd. Int. Conf. on GMA, C.Tyren, Amter, France (1988), Ch. 7, p. 15Google Scholar
  59. 59.
    Vranish, J.M.: Magnetostrictive direct drive rotary motor development. IEEE Trans. MAG. 27, N 6, Nov. 1991, pp. 5355–5357Google Scholar
  60. 60.
    Mori, K.: European Patent, N 0155694A2 (1985)Google Scholar
  61. 61.
    Akuta, T.: Rotational-type actuators with Terfenol-D rods. Proc. Actuator 92, Axon, Bremen, Germany (1992), pp. 244–248Google Scholar
  62. 62.
    Akuta, T.: Improved Rotational-type actuators with Terfenol-D rods. Proc. Actuator 94, Axon, Bremen, Germany (1994), pp. 272–274Google Scholar
  63. 63.
    Claeyssen, F.: Design and construction of a new resonant Magnetostrictive Motor. Proc. Intermag 96, Seattle, WA, June 1996, IEEE Trans. MAG also Proc. Actuator 96, Axon, Bremen, Germany (1996), pp. 172–274Google Scholar
  64. 64.
    Claeyssen, F.: A new multi-mode piezo-electric motor. Proc. Int. Conf. on Intelligent Materials, ICIM96-ECSSM96, SPIE vol. 2779, Lyon, France (1996), pp. 634-637 also Proc. Actuator 96, Axon, Bremen, Germany (1996), pp. 152–155Google Scholar
  65. 65.
    Fukuda, T.: GMA applications to micromobile robot as microactuator without power supply cables. IEEE Microelectromechanical Systems, Proc. (1991), pp. 210–215Google Scholar
  66. 66.
    Honda, T.: Fabrication of Magnetostrictive Actuators Using Rare-Earth (Tb, Sm)-Fe Thin Films. J. Appl. Phys. 76 (10), 15 Nov 1994, pp. 6994–6999Google Scholar
  67. 67.
    Betz, J.: Torsion based, drift-free magnetostrictive microactuator. Proc. Actuator 96, Axon, Bremen, Germany (1996), pp. 283–286Google Scholar
  68. 68.
    Claeyssen, F.: Micromotors Using Magnetostrictive Thin Films. Proc. SPIE Conf. Smart Structures and Materials, San Diego, US (March 98)Google Scholar
  69. 69.
    Engdahl, G.: A time dependent radially resolved simulation model of giant magnetostrictive materials. in: Mechanical Modelling of New Electromagnetic Materials, R.K.T Hsieh, Elsevier, pp. 131–138 (1990)Google Scholar
  70. 70.
    Engdahl, G.: Handbook of Giant Magnetostrictive Materials. Academic, San Diego, USA (1999), pp. 386Google Scholar
  71. 71.
    Berqvist, A.: A model for magnetomechanical hysteresis and losses in magnetostrictive materials. J. Appl. Phys. 79 (8) (1996)Google Scholar
  72. 72.
    Duerig, T.W., Melton, K.N., Stöckel, D., Wayman, C.M.: Engineering Aspects of Shape Memory Alloys. Butterworth-Heinemann, London (1990)Google Scholar
  73. 73.
    Funakubo, H. (Ed.): Shape Memory Alloys. Gordon and Breach, New York (1984)Google Scholar
  74. 74.
    Hornbogen, E.: On the Term ‘Pseudo-elasticity’. Metallkunde, Robotica 18 (1995) 1, pp. 341–344Google Scholar
  75. 75.
    Krämer, J.: Formgedächtnislegierungen in der Automobiltechnik und im Maschinenbau. Lecture notes of the course ‘Konstruieren mit Formgedächtnislegierungen’, Technische Akademie Esslingen, course no. 17964/50.051, Ostfildern, Feb. 21–22 (1994), pp. 79–111 (in German)Google Scholar
  76. 76.
    Mertmann, M., Wuttig, M.: Application and Hysteresis of Different Shape Memory Alloys for Actuators. Proc. 9th Int. Conf. on New Actuators, June 14–16, Bremen, Germany (2004), pp. 72–77Google Scholar
  77. 77.
    Olier, P., Tournie, Y., Roblin, C.: Shape Memory Effect and Recovery Stress Measurements in High Temperature Ti-Ni-Hf Shape Memory Alloys. Proc. 6th Int. Conf. on New Actuators, June 17–19, Bremen, Germany (1998)Google Scholar
  78. 78.
    Gümpel, P.: Formgedächtnislegierungen. Expert-Verlag, Renningen (2004)Google Scholar
  79. 79.
    Furuya, Y., Matsumoto, M., Matsumoto, T.: Mechanical Properties and Microstructure of Rapidly Solidified TiNiCu-Alloy. Proc. Int. Conf. on Shape Memory and Superelasticity, March 7–10, Pacific Grove, CA, USA (1994), pp. 905–910Google Scholar
  80. 80.
    Holleck, H., Kirchner, S., Quandt, E., Schlossmacher, P.: Preparation and Characterization of TiNi SMA Thin Films. Proc. 4th Int. Conf. on New Actuators, June 15–17, Bremen, Germany (1994), pp. 361–364Google Scholar
  81. 81.
    Ishida, A., Takei, A., Miyazaki, S.: Formation of Ti–Ni Shape Memory Films by Sputtering Method. Proc. Int. Conf. Martensitic Transformations ICOMAT-92, July 20–24, Monterey, CA, USA (1992), pp. 987–992Google Scholar
  82. 82.
    Kristen, M.: Untersuchungen zur elektrischen Ansteuerung von Formgedächtnis-Antrieben in der Handhabungstechnik. Braunschweiger Schriften zur Mechanik, No. 15–1994, Mechanik-Zentrum der TU Braunschweig (1994), (in German)Google Scholar
  83. 83.
    Hesselbach, J., Stork, H.: Simulation and Control of Shape Memory Actuators. Proc. 5th Int. Conf. on New Actuators, June 26–28, Bremen, Germany (1996), pp. 396–399Google Scholar
  84. 84.
    Hesselbach, J., Hornbogen, E., Mertmann, M., Pittschellis, R., Stork, H.: Optimization and Control of Electrically Heated Shape Memory Actuators. Proc. 4th Int. Conf. on New Actuators, June 15–17, Bremen, Germany (1994), pp. 337–340Google Scholar
  85. 85.
    Russel, S., Sczerzenie, F; Clapp, P.: Engineering Considerations in the Application of NiTiHf and NiAl as Practical High-Temperature Shape Memory Alloys. Proc. Int. Conf. on Shape Memory and Superelastic Technologies, March 7–10, Pacific Grove, CA, USA (1994), pp. 43–48Google Scholar
  86. 86.
    Touminen, S.M.: High Transformation Temperature Ni–Ti–Hf Alloys. Proc. Int. Conf. on Shape Memory and Superelastic Technologies, March 7–10, Pacific Grove, CA, USA (1994), pp. 49–54Google Scholar
  87. 87.
    Hesselbach, J., Kristen, M.: Shape Memory Actuators as Electrically Controlled Positioning Elements. Proc. 3rd Int. Conf. on New Actuators, June 24–26, Bremen, Germany (1992), pp. 85–91Google Scholar
  88. 88.
    Pitschellis, R.: Mechanische Miniaturgreifer mit Formgedächtnisantrieb. PhD thesis, TU Braunschweig, Fortschritt-Berichte VDI (1998)Google Scholar
  89. 89.
    Bütefisch, S., Pokar, G., Büttenbach, S., Hesselbach, J.: A New SMA Actuated Miniature Silicon Gripper for Micro Assembley. Proc. 7th Int. Conf. on New Actuators, June 19–21, Bremen, Germany (2000), pp. 334–337Google Scholar
  90. 90.
    Bütefisch, S.: Entwicklung von Greifern für die automatisierte Montage hybrider Mikrosysteme. PhD thesis, TU Braunschweig, Shaker-Verlag (2003)Google Scholar
  91. 91.
    Raatz, A., Wrege, J., Plitea, N., Hesselbach, J.: High Precision Complaint Parallel Robot. Production Engineering Research and Development. WGP, Issue XII/1, Berlin (2005), pp. 197–202Google Scholar
  92. 92.
    Hesselbach, J., Raatz, A., Kunzmann, H.: Performance of Pseudo-Elastic Flexure Hinges in Parallel Robots for Micro-Assembly Tasks. Annals of the CIRP, Vol. 53/1, (2004), pp. 329–332Google Scholar
  93. 93.
    Pickard, W.F.: Electrical Force Effects in Dielectric Liquids. Progress in Dielectrics. Vol. 6, Temple, London (1965), p. 3Google Scholar
  94. 94.
    Bullough, W.A., Stringer, J.D.: The Incorporation of the Electroviscous Effect in a Fluid Power System. Proc. 3rd Int. Fluid Power Symp., Turin, B.H.R.A. (May 1973), pp. F3–37Google Scholar
  95. 95.
    Winslow, W.M.: Induced vibration of Suspensions. J. Appl. Phys. Vol. 20 (December 1949), p. 1137Google Scholar
  96. 96.
    Whittle, M., Peel, D.J., Firoozian, R., Bullough, W.A.: Dependence of E R. Response Time on Conductivity and Polarisation Time. Phys. Rev. E. Pt6A, Vol. 49 (1994), pp. 5249–5259Google Scholar
  97. 97.
    Philips, R.W., Auslander, D.M.: The Electro Plastic Flow Modulator. Source unknown (May 1971)Google Scholar
  98. 98.
    Tsukiji, T., Utashiro, T.: Flow Characterisation of E. R. Fluids Between Two Parallel Plate Electrodes. Proc. ASME Int. Congress and Expo., San Francisco, Developments in Electrorheological flows FED Vol. 235, MD Vol. 71 (Nov. 1996), pp. 37–42Google Scholar
  99. 99.
    Bullough, W.A., Foxon, M.B.: The Application of an Electroviscous Damper to a Vehicle Suspension System. Proc. 3rd. Int. Conf. on Vehicle System Dynamics, Blacksburg, Virginia, Swets and Zeitlinger, Amsterdam (August 1984), p. 144Google Scholar
  100. 100.
    Janocha, H., Rech, B., Bölter, R.: Practice-Relevant Aspects of Constructing ER. Actuators. Proc. 5th Int. Conf. on ERF/MRS held SMMART Sheffield. World Scientific (July 1995), pp. 435–447Google Scholar
  101. 101.
    Atkin, R., Xiao, S., Bullough, W.A.: Solutions of the Constitutive Equations for the Flow of an Electro-Rheological Fluid in Radial Configurations. J. of Rheology, Vol. 35 (1991), pp. 1441–1461CrossRefGoogle Scholar
  102. 102.
    Winslow, W.M.: Field Responsive Force Transmitting Compositions. United States Patent Specification No. 3, 047, 507 (July 31st 1962)Google Scholar
  103. 103.
    Ellam, D.J., Bullough, W.A., Atkin, R.J.: Analysis of smart clutch with cooling flow using 2D Bingham plastic analysis and CFD. Proc IMechE part A. J. of Power and Energy, Vol. 219, Nr. 8 (2005), pp. 639–652Google Scholar
  104. 104.
    Bullough, W.A. et al.: The Electro-rheological Clutch: Design, Performance, Characterisation and Operation. Proc. I Mech E. Vol. 207 (1993), pp. 82–95Google Scholar
  105. 105.
    Ellam, D.J., Atkin, R.J., Bullough, W.A.: An electro structured fluid in transient operation. Proc IMechE part A. J. of Power and Energy, Vol. 210 (2005), pp. 61–76Google Scholar
  106. 106.
    Tian, Y. et al: Mechanical Properties of ER Fluids. Proc 9th Int. Conf. ER Fluids and MR suspensions, World Scientific (2005), pp. 1328–1334Google Scholar
  107. 107.
    Sheng, P. et al: ER fluids US Pat 2004/0051076Google Scholar
  108. 108.
    Wu, C.W., Chen, Y., Tang, X., Conrad, H.: Conductivity and Force between particles in a model ERF. I – Conductivity II – Force. Proc. 5th Int. Conf. ERF/MRS held Sheffield (1995), pp. 525–536Google Scholar
  109. 109.
    Boissy, C., Atten, P., Foulc, J.N.: The Conduction Model of Electro Rheological Effect Revisited. ibid pp. 156–165 – see also pp. 710–726 and pp. 756–763 by same authorsGoogle Scholar
  110. 110.
    Peel, D.J., Stanway, R., Bullough, W.A.: The Generalised Presentation of Valve and Clutch Data for an ER Fluid and Practical Performance Prediction Methodology. ibid pp. 279–290Google Scholar
  111. 111.
    Tozer, R., Orrell, C.T., Bullough W.A.: On-Off Excitation Switch for E.R. Devices. Int. J. Mod. Phys. B. Vol 8, No. 20 and 21 (1994), pp. 3005–3014Google Scholar
  112. 112.
    Bullough, W.A.: Smart Fluid Machines. Chapter 9 of Smart Technologies, World Scientific (2003), pp. 193–218Google Scholar
  113. 113.
    Sianaki, A.H., Bullough, W.A., Tozer, R., Whittle, M.: Experimental Investigation into Electrical Modelling of Electro-rheological Fluid Shear Mode. Proc. I.E.E, Sci. Meast. & Tech. Vol. 141, No. 6 (1994), pp. 531–537CrossRefGoogle Scholar
  114. 114.
    Bullough, W.A., Makin, J., Johnson, A.R., Firoozian, R., Sianaki, A.H.: ERF Shear Mode Characteristics: Volume Fraction, Shear Rate and Time Effects. Trans. ASME, J. Dyn. Syst. Meast. and Control (June 1996), pp. 221–225Google Scholar
  115. 115.
    Johnson, A.R., Makin, J., Bullough, W.A.: E. R. Catch/Clutch Simulations. Int. J. Mod. Phys. B. Vol. 8, No. 20 and 21 (1994), pp. 2935–2954Google Scholar
  116. 116.
    Wolfe, C., Wendt, E.: Application of ERF in Hydraulic Systems. Proc. AXON-VDI/E Actuator 94 Conf., Bremen (1994), pp. 284–287Google Scholar
  117. 117.
    Bloodworth, R., Wendt, E.: Materials for ER Fluids. Proc. 5th Int. Conf. ERF/MRS, held SMMART Sheffield 1995. World Scientific (July 1995), pp. 118–131Google Scholar
  118. 118.
    Bullough, W.A., Makin, J., Johnson, A.R.: Requirements and Targets for ER Fluids in Electrically Flexible High Speed Power Transmission. Am. Chem. Soc. Fall Meeting Washington DC., Plenum (1995), pp. 295–302Google Scholar
  119. 119.
    Naem, A.S., Stanway, R., Sproston, J.L., Bullough, W.A.: A Strategy for Adaptive Damping in Vehicle Primary Suspension Systems. 1994 Proc. ASME. Winter Annual Meeting Chicago (1994), pp. 395–399Google Scholar
  120. 120.
    Peel, D.J., Stanway, R., Bullough, W.A.: A Design Methodology based upon Generalised Fluid Data. Int. Conf. Intel Materials, Lyon. Engineering with ERF (1996), pp. 310–316Google Scholar
  121. 121.
    Hosseini-Sianaki, A., Makin, J., Xiao, S., Johnson, A.R., Firoozian, R., Bullough, W.A.: Operational Considerations in the Use of an Electro-Rheological Catch Device. Proc. Soc. Fluid Power Transmission and Control, lst Fluid Power Trans. & Control Symp., Beijing, Beijing Inst. Tech. (1991), pp. 591–595Google Scholar
  122. 122.
    Block, H., Kelly, J.: Electro-rheology. J Phys D 21 (1988), p. 1661Google Scholar
  123. 123.
    Peel, D.J., Bullough, W.A.: The Effect of Flow-rate, Excitation Level and Solids Content on the Time Response of an Electro-rheological Valve. J. Intel. Matl. Systems and Structures, Vol. 4, No.l (1993), pp. 54–64Google Scholar
  124. 124.
    Dwyer-Joyce, R., Bullough, W.A., Lingard, S.: Elastohydrodynamic Performance of Unexcited Electro-Rheological Fluids. Proc 5th Int. Conf. ERF/MRS, held SMMART Sheffield. World Scientific (July 1995), pp. 376–384Google Scholar
  125. 125.
    Yates, J.R., Lau, D.S., Bullough, W.A.: Inertial Materials: Perspective, Review and Future Requirements. Proc. AXON-VDI/E Actuator’94 Conf., Bremen (1994), pp. 275–278Google Scholar
  126. 126.
    Akio Inoue, Ushio Ryu, Syohji Nishmura: Caster Walker with Intelligent Breaks employing ER fluid composed of liquid crystal polysiloxane. Proc 8th Int. Conf. ER Fluids and ER/MR suspensions (2001), pp. 23–29Google Scholar
  127. 127.
    Kiyohito Koyama: Performance of Electrical Sensitive Fluid. Proc 4th ESSM and 2nd MIMR Conf (July 1998), pp. 241–253Google Scholar
  128. 128.
    Bullough, W.A.: Smart Machine Systems. Chapter 3 in Smart Structures Applications and Related Technologies, Springer (2001)Google Scholar
  129. 129.
    Winslow, W.M.: Induced Fibration of Suspensions. J. Appl. Phys., 20 (1949), pp. 1137-1140CrossRefGoogle Scholar
  130. 130.
    Phillips, R.W.: Engineering Applications of Fluids with a Variable Yield Stress. Ph.D. Thesis, University of California, Berkeley (1969)Google Scholar
  131. 131.
    Carlson, J.D., Catanzarite, D.M. and St. Clair, K.A.: Commercial Magneto-Rheological Fluid Devices. Proc. 5th Int. Conf. on ER Fluids, MR Fluids and Assoc. Tech., Sheffield (July 1995), W.A. Bullough, ed., World Scientific, Singapore (1996), pp. 20–28Google Scholar
  132. 132.
    Carlson, J.D.: The Promise of Controllable Fluids. Actuator 94, 4th Int. Conf. on New Actuators, H. Borgmann and K. Lenz, eds, AXON Technologie, Bremen (1994), pp. 266–270Google Scholar
  133. 133.
    Shtarkman, E.M.: U.S. Patent 4,942,947 (1990)Google Scholar
  134. 134.
    Shtarkman, E.M.: U.S. Patent 4,992,190 (1991)Google Scholar
  135. 135.
    Kordonsky, W.: Magnetorheological Effect as a Base of New Devices and Technologies. J. Magnetics and Magnetic Materials 122 (1993), pp. 395–398CrossRefGoogle Scholar
  136. 136.
    Kordonsky, W.J. and Jacobs, S.D.: Magnetorheological Finishing. Proc. 5th Int. Conf. on ER Fluids, MR Suspensions and Assoc. Tech. (July 1995), Sheffield, W.A. Bullough, ed., World Scientific, Singapore (1996), pp. 1–12Google Scholar
  137. 137.
    Carlson, J.D. and Weiss, K.D.: A Growing Attraction to Magnetic Fluids. Machine Design, Aug. 8 (1994), pp. 61–66Google Scholar
  138. 138.
    Weiss, K.D., Duclos, T.G., Carlson, J.D., Chrzan, M.J. and Margida, A.J.: High Strength Magneto- and Electrorheological Fluids. Soc. Automotive Engineers, SAE, Paper #932451 (1993)Google Scholar
  139. 139.
    Carlson, J.D., and Sproston, J.L.: Controllable Fluids in 2000-Status of ER and MR Fluid Technology. Actuator 2000, Proc. 7th Int. Conf. on New Actuators, Bremen, H. Borgmann ed., Bremen: Messe Bremen (2000), pp. 126–130Google Scholar
  140. 140.
    Rabinow, J.: The Magnetic Fluid Clutch. AIEE Trans. 67 (1948), pp. 1308–1315Google Scholar
  141. 141.
    National Bureau of Standards : Magnetic Fluid Clutch. National Bureau of Standards Tech. News Bull., 32 No.4 (1948), pp.54–60Google Scholar
  142. 142.
    Rabinow, J.: U.S. Patent 2, 575,360 (1951)Google Scholar
  143. 143.
    Carlson, J.D.: Innovative Devices That Enable Semi-Active Control. Proc. 3rd World Conf. on Structural Control, Como, Italy, April 2002, F Casciati, ed., John Wiley, Chichester (2003), pp 227–236Google Scholar
  144. 144.
    Carlson, J.D. and Weiss, K.D.: U.S. Patent No. 5, 382; 373 (1995)Google Scholar
  145. 145.
    Ginder, J.M., Davis, L.C. and Elie, L.D.: Rheology of Magnetorheological Fluids: Models and Measurements. Proc. 5th Int. Conf. on ER Fluids, MR Suspensions and Assoc. Tech., Sheffield (July 1995), W.A. Bullough, ed., World Scientific, Singapore (1996), pp. 504–514Google Scholar
  146. 146.
    Ginder, J.M.: Rheology Controlled By Magnetic Fields. Encyclopedia of Appl. Phys., 16 (1996), pp. 487–503Google Scholar
  147. 147.
    Margida, A.J., Weiss, K.D. and Carlson, J.D.: Magnetorheological Materials Based on Iron Alloy Particles. Int. J. Mod. Physics B, 10 (1996), pp. 3335–3341CrossRefGoogle Scholar
  148. 148.
    Crosby, M.J., Harwood, R.A. and Karnopp, D.: Vibration Control Using Semi-Active Force Generators. Trans. of ASME, 73-DET-l22 (1973)Google Scholar
  149. 149.
    Karnopp, D. and Crosby, M.J.: U.S. Patent No. 3,807,678 (1974)Google Scholar
  150. 150.
    Ivers, D.E. and Miller, L.R.: Semi-Active Suspension Technology: An Evolutionary View. Lord Corp., Pub. No. LL-6005 (1994)Google Scholar
  151. 151.
    National Bureau of Standards: Further Development of the NBS Magnetic Fluid Clutch. Nat. Bureau Standards Tech. News Bull., 34 No.12 (1950), pp. 169–174Google Scholar
  152. 152.
    Lord Corporation: MotionMaster Ride Management System. Lord Corp., Pub. No. PB8008a, (1998)Google Scholar
  153. 153.
    Yanyo, L.C.: Magnetorheological (MR) Fluid for Automotive Damping Systems. Proc. IIR Suspension and Damping Conf., Germany (2004)Google Scholar
  154. 154.
    Carlson, J.D., et al.: U.S. Patent No. 5,878,851 (1999)Google Scholar
  155. 155.
    Guilford, D.: Automotive News. 22 Dec (2003) , p. 10Google Scholar
  156. 156.
    Carlson, J.D.: What Makes a Good MR Fluid. J. Intelligent Mater. Systems and Structures, 13 (2003), pp. 431–435Google Scholar
  157. 157.
    Duclos, T.G.: An Externally Tunable Hydraulic Mount Which Uses ER Fluid. Soc. Auto. Engineers, SAE Paper #870963 (1987)Google Scholar
  158. 158.
    Duclos, T.G.: Design of Devices Using Electro-rheological Fluids. Soc. Auto. Engineers, SAE Paper #881134 (1988)Google Scholar
  159. 159.
    Carlson, J.D.: MR Technology Workshop, Lord Corp., Cary (2004)Google Scholar
  160. 160.
    Lord Corp.: Rheonetic MRF-122-2ED. Product Bull. No. 2002-41-0 (2002)Google Scholar
  161. 161.
    Lord Corp.: Rheonetic MRF-132AD. Product Bull. No. 2003-15-1 (2003)Google Scholar
  162. 162.
    Lord Corp.: Rheonetic MRF-336AG. Product Bull. No. 2003-16-0 (2003)Google Scholar
  163. 163.
    Goncalves, F.D.: Characterizing the Behavior of Magnetorheological Fluids at High Velocities and High Shear Rates. Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg (2005)Google Scholar
  164. 164.
    Spencer Jr., B.F., Dyke, S.J., Sain, M.K. and Carlson, J.D.: Phenomenological Model of a MR. J. Eng. Mechanics, ASCE, 123 No. 3 (1997), pp. 230–238Google Scholar
  165. 165.
    Design News Editorial: Brake Cuts Exercise-Equipment Cost. Design News, Dec. 4 (1995), p. 28Google Scholar
  166. 166.
    Anderson, R.: Carrera MagneShock. Arre Industries, Atlanta, GA (1998)Google Scholar
  167. 167.
    Delphi Energy & Chassis Systems: Pub. DE-00-E-019 02/02, http://www.delphi.com/pdf/vpr/Magnaride.pdf (2002)Google Scholar
  168. 168.
    General Motors Corp., www.cadillac.com/cadillacjsp/cpo/highlights.jsp?section=features&model=seville&year=2002 (2002)Google Scholar
  169. 169.
    Halverson, H.: The Idaho Corvette Page. CV World Internet Publishing, http://www.idavette.net/_magride/ (2003)Google Scholar
  170. 170.
    General Motors Corp.: www.cadillac.com/cadillacjsp/cpo/highlights.jsp?section=Specs&model=xlr&year=2004, (2004)Google Scholar
  171. 171.
    New York Times: CLIII, No. 52,810, 5 April (2004), pp. A14–A15Google Scholar
  172. 172.
    Keegan Jr., W.J.: AutoBlog. www.autoblog.com/entry/1234000637030854/ (2005)Google Scholar
  173. 173.
    Stewart, J.: New Car Test Drive.Com. www.nctd.com/sneakpreview.cfm?Vehicle=2006_Buick_Lucerne&ReviewID=80> (2005)Google Scholar
  174. 174.
    Sodeyama, H., Sunakoda, K., Suzuki, K., Carlson, J.D. and Spencer, B.F.: Development of Large Capacity Semi-Active Vibration control Device Using Magneto-Rheological Fluid. Proc. ASME Pressure Vessel and Piping Conf., PVP-428-2, Atlanta (2001), pp. 109–114Google Scholar
  175. 175.
    Duan, Y.F., Ni, Y.Q. and Ko, J.M.: Cable Vibration Control Using Magneto-Rheological (MR) Dampers. Proc. 9th Int. Conf. on ER Fluids and MR Suspensions, September 2004, Beijing, K. Lu, R. Shen and J. Liu, eds., World Scientific, Singapore (2005), pp. 829–835Google Scholar
  176. 176.
    Chen, Z.Q. et al.: MR Damping System on Dongting Lake Cable-Stayed Bridge. Smart Structures and Materials 2003: Smart Systems and Nondestructive Evaluation for Civil Infrastructures. Shih-Chi Liu, ed, proc. SPIE vol. 5057 (2003), pp. 229–235Google Scholar
  177. 177.
    Lansing Linde Ltd. UK, http://www.linde-mh.co.uk/02_products/02_xrange/ 06_steering/index.html (2005)Google Scholar
  178. 178.
    Carlson, J.D., Matthis, W., Toscano, J.R.: Smart Prosthetic Based On Magnetorheological Fluids, Industrial and Commercial Applications of Smart Structures Technologies. Proc. SPIE 8th Annual Symp. on Smart Structures and Materials, Newport Beach, 2001 March 5–8, 4332 (2001), pp. 308–316Google Scholar
  179. 179.
    Biedermann, L.: Int. Patent Appl. WO9929272A1 (1999)Google Scholar
  180. 180.
    Biedermann, L., Matthis, W. and Schulz, C.: Int. Patent Appl. WO0038599A1 (2000)Google Scholar
  181. 181.
    Biedermann, L., Leg: Eur. Patent Appl. EP 0957838B1 (2000)Google Scholar
  182. 182.
    Bar-Cohen, Y. (Ed.): Electroactive polymer (EAP) Actuators as artificial muscles. Reality, potential, and Challenges. Second edition, SPIE, Bellingham, Washington (2004)Google Scholar
  183. 183.
    Madden, J.D.W. et al.: Artificial muscle technology: physical principles and naval prospects. IEEE J. Oceanic Eng., 29, 3 (2004), pp. 706–728CrossRefGoogle Scholar
  184. 184.
    Kuhn, W.: Reversible Dehnung und Kontraktion bei Änderung der Ionisation eines Netzwerks polyvalenter Fadenmolekülionen. Experimentia, 5 (1949), pp. 318–319CrossRefGoogle Scholar
  185. 185.
    Katchalsky, A .: Rapid swelling and deswelling of reversible gels of polymeric acids by ionization. Experimentia, 5 (1949), pp. 319–320CrossRefGoogle Scholar
  186. 186.
    Kuhn, W., Hargitay, B., Katchalsky, A. and Eisenburg, H. : Reversible dilatation and contraction by changing the state of ionization of high-polymer acid networks. Nature, Vol. 165 (1950), pp. 514–516CrossRefGoogle Scholar
  187. 187.
    Osada, Y.: Advances in polymer sciences. Springer, Berlin 82, 1 (1987)Google Scholar
  188. 188.
    De Rossi, D., Kajivira, K., Osada, Y., Yamauchi, A. (eds): Polymer gels. Plenum-New York (1991)Google Scholar
  189. 189.
    Osada, Y. and Matsuda, A.: Shape-Memory Gel with Order-Disorder Transition. Nature, 376, 219 (1995)Google Scholar
  190. 190.
    Osada, Y., Murphy, R. S.: Intelligent Gels. Scientific Amer. 268 (1993), pp. 82–87CrossRefGoogle Scholar
  191. 191.
    Wasserman, A.: Size and shape changes of contractile polymers. Pergamon, New York (1960)Google Scholar
  192. 192.
    Okuzaki, H. and Osada, Y.: Electro-driven chemomechanical polymer gel as an intelligent soft material. J Biomater Sci. Polym Ed., 5(5) (1994), pp. 485–496Google Scholar
  193. 193.
    Gong, J.P., Osada, Y.: Gel actuators. In: Polymer Sensors and Actuators, Osada Y and D De Rossi (Eds), Springer, Berlin (2000), pp. 272–294Google Scholar
  194. 194.
    Tanaka, T., Nishio, I., Sun, S.-T. and Ueno-Nishio, S.: Collapse of gels in an electric field. Science 218 (1982), pp. 467–469CrossRefGoogle Scholar
  195. 195.
    Tanaka, Y., Kagamo, Y., Matsuda, A., Osada, Y.: Thermoreversible transition of tensile modulus of hydrogel with ordered aggregates. Macromolecules, v. 28, 2574–257 (1995)Google Scholar
  196. 196.
    Gong, J.P., Matsumoto, S., Uchida, M.., Isogai, N., Osada, Y.: Motion of polymer gels by spreading organic fluid on water. J. Phys. Chem., 100 (26), 11092 (1996)Google Scholar
  197. 197.
    De Rossi, D., Parrini, P., Chiarelli, P. and Buzzigoli, G.: Electrically induced contracatile phenomena in charged polymer networks: preliminary study on the feasibility of muscle-like structures. Trans. Am. Soc. Artif. Internal Organs, 31 (1985), pp. 60–65Google Scholar
  198. 198.
    De Rossi, D., Chiarelli, P., Buzzigoli, G., Domenici, C., Lazzeri, L.: Contractile behaviour of electrically activated mechanochemical polymer actuators. Trans. Am. Soc. Artif. Internal Organs, 32 (1986), pp. 157–162Google Scholar
  199. 199.
    Osada, Y.: Chemical valves and gel actuators. Advanced Mater. 3 (1991), pp. 107–108CrossRefGoogle Scholar
  200. 200.
    Narita, T., Gong, J.P., Osada, Y.: Enhanced Velocity of Surfactant Binding after the Volume Collapse of an Oppositely Charged Gel. Macromol. Rapid Comm. 18 (1998), pp. 853–854CrossRefGoogle Scholar
  201. 201.
    Osada, Y., Onkuzaki, H., Hori, H.: A Polymer Gel with Electrically Driven Motility. Nature 253, 242 (1992)Google Scholar
  202. 202.
    Chiarelli, P., De Rossi, D.: Modelling and mechanical characterization of thin fibers of contractile polymer hydrogels. J. Intell. Mater. Sys. Struct., v3 (1992), pp. 396–417Google Scholar
  203. 203.
    Itoh, Y., Matsumura, T., Umemoto, S., Okui, N., Sakai, T.: Contraction/elongation mechanism of acrylonitrile gel fibers. Polymer Preprints – Japan (English Editions), 36(5–10): E184–E186 (1987)Google Scholar
  204. 204.
    Oguro, K., Asaka, K., Takenaka, H.: Polymer Film Actuator Driven by Low Voltage. Proc. of 4th Int. Symp. on Micro Machine and Human Science at Nagoya (1993), pp. 39–40Google Scholar
  205. 205.
    Asaka, K., Oguro, K., Nishimura, Y., Mizuhata, M., Takenaka, H.: Bending of polyelectrolyte membrane-platinum composites by electric stimuli I. Response characteristics to various waveforms. Polymer J., 27 (1995), pp. 436–440CrossRefGoogle Scholar
  206. 206.
    Asaka, K., Oguro, K.: Bending of polyelectrolyte membrane platinum composites by electric stimuli. Part II. Response kinetics. J. Electroanal. Chem., 480 (1–2) (2000), pp. 186–198Google Scholar
  207. 207.
    Asaka, K., Oguro, K.: Bending of polyelectrolyte membrane-platinum composite by electric stimuli. III: Self-oscillation. Electrochimica Acta, v 45 (27) (2000), pp. 4517–4523Google Scholar
  208. 208.
    Abe, Y., Mochizuki, A., Kawashima, T., Yamashita, S., Asaka, K., Oguro, K.: Effect on bending behavior of counter cation species in perfluorinated sulfonate membrane-platinum composite. Polymers for Advanced Technologies, v 9, n 8 (1998), pp. 520–526CrossRefGoogle Scholar
  209. 209.
    Onishi, K., Shingo, S., Asaka, K., Fujiwara, N. and Oguro, K.: Morphology of electrodes and bending response of the polymer electrolyte actuator. Electrochimica Acta 46(5) (2001), pp. 737–743Google Scholar
  210. 210.
    Onishi, K., Sewa, S., Asaka, K., Fujiwara, N., Oguro, K.: Effects of counter ions on characterization and performance of a solid polymer electrolyte actuator. Electrochimica Acta, v 46(8) (2001), pp. 1233–1241Google Scholar
  211. 211.
    Shahinpoor, M.: Ion-exchange polymer-metal composites as biomimetirc sensors and actuators. In Polymer Sensors and Actuators, Osada, Y. and De Rossi, D. (Eds), Springer, Berlin (2000), pp. 325–360Google Scholar
  212. 212.
    Oguro, K., Fujiwara, N., Asaka, K., Onishi, K., Sewa, S.: Polymer electrolyte actuator with gold electrodes. Proc. SPIE – Int. Soc. Opt. Eng., v 3669 (1999), pp. 64–71Google Scholar
  213. 213.
    Onishi, K., Sewa, S., Asaka, K., Fujiwara, N., Oguro, K.: Bending response of polymer electrolyte actuator. Proc. of SPIE – Int. Soc. Opt. Eng., v 3987 (2000), pp. 121–128Google Scholar
  214. 214.
    Tadokoro, S., Yamagami, S., Takamori, T. and Oguro, K.: Modeling of Nafion-Pt composite actuators (ICPF) by ionic motion. Proc. SPIE – Int. Soc. Opt. Eng., v 3987 (2000), pp. 92–102Google Scholar
  215. 215.
    Bar-Cohen, Y., Xue, T., Joffe, B., Lih, S.-S., Shahinpoor, M., Simpson, J., Smith, J., Willis, P.: Electroactive polymers (IPMC), low mass muscle actuators. Proc. 1997 SPIE Smart Mater. Struct. Conf., San Diego California, SPIE 3041–76 (1997)Google Scholar
  216. 216.
    Salehpoor, K., Shahinpoor, M., Razani, A.: Role of ion transport in dynamic sensing and actuation of ionic polymeric platinum composite artificial muscles. Proc. 1998 SPIE Smart Mater. Struct. Conf., San Diego California, SPIE 3330–09 (1998)Google Scholar
  217. 217.
    Shahinpoor, M., Bar-Cohen, Y., Simpson, J.O., Smith, J.: Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles – a review. Smart Mater. Struct., 7, 6 (1998), pp. R15–R30Google Scholar
  218. 218.
    Nemat-Nasser, S.: Micromechanics of actuation of ionic polymer-metal composites. J. Appl. Phys., 92, 5 (2002), pp. 2899–2915.Google Scholar
  219. 219.
    Smela, E., Gadegaard, N.: Surprising volume change in PPY(DBS): an atomic force microscopy study. Adv. Mater. 11 (11) (1999), pp. 953–957Google Scholar
  220. 220.
    Mazzoldi, A., Carpi, F., De Rossi, D.: Polymers responding to electrical or electrochemical stimuli for linear actuators. Ann. Chim.-Sci. Mat., 29 (6) (2004), pp. 55–64Google Scholar
  221. 221.
    Ding, J., Liu, L., Spinks, G. M., Zhou, D., Wallace, G.G., Gillespie, J.: High performance conducting polymer actuators utilising a tubular geometry and helical wire interconnects. Synth. Met., 138 (2003), pp. 391–398CrossRefGoogle Scholar
  222. 222.
    Ding, J., Zhou, D., Spinks, G., Wallace, G.G., Forsyth, S., Forsyth, M., MacFarlane, D.: Use of ionic liquids as electrolytes in electromechanical actuator systems based on inherently conducting polymers. Chem. Mater., 15, (2003), pp. 2392–2398Google Scholar
  223. 223.
    Bay, L., West, K., Sommer-Larsen, P.: A conducting polymer artificial muscle with 12% linear strain. Adv. Mat., 15 (4) (2003), pp. 310–313Google Scholar
  224. 224.
    Otero, T.F., Cortes, M.T.: Artificial muscles with tactile sensitivity. Adv. Mater., 15 (4) (2003), pp. 279–282Google Scholar
  225. 225.
    Lu, W., Fadeev, A.G., Qi, B., Smela, E., Mattes, B.R., Ding, J., Spinks, G.M., Mazurkiewicz, J., Zhou, D., Wallace, G.G., MacFarlane, D.R., Forsyth, S.A., Forsyth, M.: Use of ionic liquids for conjugated polymer electrochemical devices. Science, 297 (2002), pp. 983–987CrossRefGoogle Scholar
  226. 226.
    Spinks, G.M., Liu, L., Wallace, G.G., Zhou, D.: Strain response from polypyrrole actuators under load. Adv. Funct. Mater., 12 (6–7) (2002), pp. 437–440Google Scholar
  227. 227.
    Bay, L., Jacobsen, T., Skaarup, S., West, K.: Mechanism of actuation in conducting polymers: osmotic expansion. J. Phys. Chem. B., 105 (36) (2001), pp. 8492–8497Google Scholar
  228. 228.
    Lewis, T.W., Spinks, G.M., Wallace, G.G., Mazzoldi, A., De Rossi, D.: Investigation of the applied potential limits for polypyrrole when employed as the active components of a two-electrode device. Synth. Met., 122 (2001), pp. 379–385CrossRefGoogle Scholar
  229. 229.
    Mazzoldi, A., Della Santa, A., De Rossi, D.: Conducting polymer actuators: properties and modeling. In Polymer sensors and Actuators, Osada, Y. and De Rossi, D. Ed., Berlin: Springer (2000), pp. 207–244Google Scholar
  230. 230.
    Mazzoldi, A., Degl’Innocenti, C., Michelucci; De Rossi, D.: Actuative properties of polyaniline fiber under electrochemical stimulation. Mat. Sci. Tech. C, 6 (1998), pp. 65–72Google Scholar
  231. 231.
    De Rossi, D., Della Santa, A., Mazzold, A.: Performance and work capacity of a polypyrrole conducting polymer linear actuator. Synth. Met., 90 (1997), pp. 93–100CrossRefGoogle Scholar
  232. 232.
    Della Santa, A., De Rossi, D., Mazzoldi, A.: Characterization and modelling of a conducting polymer muscle-like linear actuator. Smart. Mater. Struct., 6 (1) (1997), pp. 23–34Google Scholar
  233. 233.
    Baughman, R.H.: Conducting polymer artificial muscles. Synth. Met., 78 (1996), pp. 339–353CrossRefGoogle Scholar
  234. 234.
    Gandhi, M.R., Murray, P., Spinks, G.M., Wallace, G.G.: Mechanism of electromechanical actuation in polypyrrole. Synth. Met., 73 (1995), pp. 247–256CrossRefGoogle Scholar
  235. 235.
    Chiarelli, P., Della Santa, A., De Rossi, D., Mazzoldi, A.: Actuation properties of electrochemical driven polypyrrole free-standing films. J. Int. Mat. Syst. Struc, 6 (1) (1995), pp. 32–37Google Scholar
  236. 236.
    Kaneto, K., Kaneko, M., Min, Y., MacDiarmid, Alan G.: Artificial muscle: Electromechanical actuators using polyaniline films. Synth. Met., 71 (1995), pp. 2211–2212CrossRefGoogle Scholar
  237. 237.
    Baughman, R.H., Shacklette, L.V.: Science and Application of Conducting Polymers. Salaneck, W. R., Clark, D. T., Samuelsen, E. J. Ed., New York: Adam Hilger (1990)Google Scholar
  238. 238.
    Otero, T., Sansinena, J. M.: Soft and wet conducting polymers for artificial muscles. Adv. Mater., 10 (6) (1998), pp. 491–494Google Scholar
  239. 239.
    Otero, T.F. et al.: Artificial Muscles From Bilayer Structures. Synth. Met., 55–57,pp. 3713–3717 (1993)Google Scholar
  240. 240.
    Pei, Q., Inganäs, O.: Electrochemical muscles: Bending strips built from conjugated polymers. Synth. Met., 57 (1), 3718–372 (1993)Google Scholar
  241. 241.
    Pei, Q., Inganäs, O., Lundström, I.: Bending bilayer strips built from polyaniline for artificial electrochemical muscles. Smart Mater. Struct., 2 (1993), pp. 1–6CrossRefGoogle Scholar
  242. 242.
    Smela, E., Inganäs, O., Lundström, I.: Conducting polymers as artificial muscles: challenges and possibilities. J. Micromech. Microeng. 3 (1993), pp. 203–205CrossRefGoogle Scholar
  243. 243.
    Della Santa, A., Mazzoldi, A., De Rossi, D.: Steerable microcatheter actuated by embedded conducting polymer structures. J. Intell. Mater. Sys. Structures, vol. 7, n 3 (1996), pp. 292–300Google Scholar
  244. 244.
    Web site: http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/EAP-material-n-products.htm.Google Scholar
  245. 245.
    Chou, C.P., Hannaford, B.: Static and dynamic characteristics of McKibben pneumatic artificial muscles. Proc. 1994 IEEE Int. Conf. on Robotics Automation, San.Diego, CA, USA, vol. 1 (1994), pp. 281–286Google Scholar
  246. 246.
    De Rossi, D., Lorussi, F., Mazzoldi, A., Rocchia, W., Scilingo, E.P.: A strain amplified electroactive polymer actuator for haptic interfaces. Proc. EAPAD-SPIE, Newport Beach, CA, March, (2001)Google Scholar
  247. 247.
    Smela, E.: Conjugated Polymer Actuators for Biomedical Applications. Adv. Mater., 15 (6) (2003), pp. 481–494Google Scholar
  248. 248.
    Takashima, W., Kaneko, M., Kaneto, K., MacDiarmid, A. G.: The electrochemical actuator using electrochemically-deposited poly-aniline film. Synth. Met., 71 (1995), pp. 2265–2266CrossRefGoogle Scholar
  249. 249.
    Heinze, J.: Electrochemistry of conducting polymers. Synth. Met., 41–43 (1991), pp. 2805–2823Google Scholar
  250. 250.
    Wang, H.L., Romero, R.J., Mattes, B.R., Zhu, Y., Winokur, M. J.: Effect of processing conditions on the properties of high molecular weight conductive polyaniline fiber. J. Pol. Sci. Part B, 38 (1) (2000), pp. 194–204Google Scholar
  251. 251.
    Mattes, B.R., Wang, H.L., Yang, D., Zhu, Y.T., Blumenthal, W. R., Hundley, M.F.: Formation of conductive polyaniline fibers derived from highly concentrated emeraldine base solutions. Synt. Met., 84 (1994), pp. 45–49CrossRefGoogle Scholar
  252. 252.
    Chinn, D., Janata, J.: Spin-cast thin films of polyaniline. Thin Solid Films, 252, 145 (1994)Google Scholar
  253. 253.
    Lee, J. Y., Kim, D. Y., Kim, C. Y.: Synthesis of soluble polypyrrole of the doped state in organic solvents. Synth. Met., 74, 103 (1995)Google Scholar
  254. 254.
    Kim, I.W., Lee, J. Y., Lee, H.: Solution-cast polypyrrole film: the electrical and thermal properties. Synth. Met., 78, 177 (1996)Google Scholar
  255. 255.
    Miller, E.K., Lee, K., Heeger, A. J., Lee, J. Y., Kim, D. Y., Kim, C. Y.: Reflectance studies of soluble polypyrrole doped with dodecylbenzene sulfonic acid. Synth. Met., 84, 821 (1997)Google Scholar
  256. 256.
    Pyo, M., Bohn, C.C., Smela, E., Reynolds, J.R., Brennan, A.B.: Direct strain measurement of polypyrrole actuators controlled by the polymer/gold interface. Chem. Mater., 15 (4) (2003), pp. 916–922Google Scholar
  257. 257.
    Jager, E.W.H., Smela, E., Inganäs, O.: Microfabricating Conjugated Polymer Actuators. Science, 290 (2000), pp. 1540–1545CrossRefGoogle Scholar
  258. 258.
    Smela, E.: Microfabrication of PPy microactuators and other conjugated polymer devices. J. Micromech. Microeng., 9 (1998), pp. 1–18CrossRefGoogle Scholar
  259. 259.
    Smela, E., Inganäs, O., Pei, Q., Lundström, I.: Electrochemical muscles: micromachining fingers and corkscrews. Adv. Mater., 5 (1993), pp. 630–632CrossRefGoogle Scholar
  260. 260.
    Smela, E., Kallenbach, M., Holdenried, J.: Electrochemically driven polypyrrole bilayers for moving and positioning bulk micromachined silicon plates. J. Microelectrom. Syst, 8 (1999), pp. 373–383CrossRefGoogle Scholar
  261. 261.
    Jager, E.W.H., Smela, E., Inganäs, O., Lundström, I.: Application of polypyrrole microactuators. Proc. SPIE Int. Soc. Opt. Eng. 3669 (1999), pp. 377–384Google Scholar
  262. 262.
    Smela, E., Inganäs, O., Lundström, I.: Controlled folding of micrometer-size structures. Science, 268 (1995), pp. 1735–1738CrossRefGoogle Scholar
  263. 263.
    Jager, E.W.H., Inganäs, O., Lundström, I.: Perpendicular Actuation with Individually Controlled Polymer Microactuators. Adv. Mat., 13 (1) (2001), pp. 76–79Google Scholar
  264. 264.
    Jager, E.W.H., Inganäs, O.: Lundström, I.: Microrobots for Micrometer-Size Objects in Aqueous Media Potential Tools for Single-Cell Manipulation. Science, 288 (2000), pp. 2335–2338CrossRefGoogle Scholar
  265. 265.
    Pede, D., Serra, G., De Rossi, D.: Microfabrication of conducting polymer devices by ink-jet stereolithography. Mater. Sci. Eng. part C, 5 (1998), pp. 289–291CrossRefGoogle Scholar
  266. 266.
    Chang, S.C., Bharathan, J., Yang, Y., Helgeson, R., Wudl F., Ramey M. B., Reynolds, J.R.: Dual-color polymer light-emitting pixels processed by hybrid inkjet printing. Appl. Phys. Lett., 73 (1998), pp. 2561–2563CrossRefGoogle Scholar
  267. 267.
    Hebner, T., Wu, C.C., Marcy, D., Lu, M.H., Sturm, J.C.: Ink-jet printing of doped polymers for organic light emitting devices. Appl. Phys. Lett., 72 (1998), pp. 519–521CrossRefGoogle Scholar
  268. 268.
    Whitesides, G.M. et al: Soft lithography in biology and biochemistry. Annual Rev. Biomed. Eng, 3 (2001), pp. 335–73CrossRefGoogle Scholar
  269. 269.
    Bao, Z.N., Rogers, J.A., Katz, H.E.: Printable organic and polymeric semiconducting materials and devices. J. Mater. Chem., 9 (1999), pp. 1895–1904CrossRefGoogle Scholar
  270. 270.
    Granlund, T., Nyberg, T., Roman, L.S., Svensson, M., Inganas, O.: Patterning of Polymer Light-Emitting Diodes with Soft Lithography. Adv. Mater., 12 (2000), pp. 269–273CrossRefGoogle Scholar
  271. 271.
    Vozzi, G. et al: Microfabricated PLGA scaffolds: a comparative study for application to Tissue Engineering. Mat. Sci. Eng. C, 20 (1–2) (2002), pp. 43–47Google Scholar
  272. 272.
    Vozzi, G. et al.: Microsyringe-Based Deposition of Two-Dimensional and Three-Dimensional Polymer Scaffolds with a Well-Defined Geometry for Application to Tissue Engineering. Tissue Eng., 8 (6) (2002), pp. 1089–1098Google Scholar
  273. 273.
    Lewis, T.W., Spinks, G.M., Wallace, G.G., De Rossi, D., Pachetti, M.: Development of an all polymer electromechanical actuator. Polymer Preprints, 38 (2) (1997), pp. 520–521Google Scholar
  274. 274.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354 (1991), pp. 56–58CrossRefGoogle Scholar
  275. 275.
    Dalton, B., Collins, S., Muñoz, E., Razal, J. M., Ebron, V. H., Ferraris, J. P., Coleman, J. N., Kim, B. G., Baughman, R. H.: Super-tough carbon-nanotube fibers. Nature, 423, 703 (2003).Google Scholar
  276. 276.
    Baughman, R.H., Changxing Cui; Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., De Rossi, D., Rinzler, A.G., Jaschinski, O., Roth, S., Kertesz, M.: Carbon nanotube actuators. Science, vol. 284, 1340 (1999)Google Scholar
  277. 277.
    Spinks, G.M., Wallace, G.G., Fifield, L.S., Dalton, L.R., Mazzoldi, A., De Rossi, D., Khayrullin, I.I., Baguhman, R.H.: Pneumatic carbon nanotube actuators. Advanced Mater., 14 (23) (2002), pp. 1728–1732Google Scholar
  278. 278.
    Ahluwalia, A., Baughman, R., De Rossi, D., Mazzoldi, A., Tesconi, M., Tognetti, A., Vozzi, G.: Microfabricated electroactive carbon nanotube actuators. Proc. EAPAD-SPIE, Newport Beach, CA (2001).Google Scholar
  279. 279.
    Zhang, M., Atkinson, K.R., Baughman, R.H.: Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology. Science 306 (2004), pp. 1358–1361CrossRefGoogle Scholar
  280. 280.
    Pelrine, R.E., Kornbluh, R.D. and Joseph, R.D.: Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensors and Actuators A-Phys., 64 (1998), pp. 77–85CrossRefGoogle Scholar
  281. 281.
    Pelrine, R., Kornbluh, R., Pei, Q. and Joseph, J.: High-speed electrically actuated elastomers with strain greater than 100%. Science, 287 (2000), pp. 836–839CrossRefGoogle Scholar
  282. 282.
    Pelrine, R., Kornbluh, R. and Kofod, G.: High-strain actuator materials based on dielectric elastomers. Advanced Mater., 12 (16) (2000), pp. 1223–1225Google Scholar
  283. 283.
    Pelrine, R., Kornbluh, R., Joseph, J., Heydt, R., Pei, Q., Chiba, S.: High-field deformation of elastomeric dielectrics for actuators. Mater. Sci. Eng. C. 11 (2000), pp. 89–100CrossRefGoogle Scholar
  284. 284.
    Carpi, F. and De Rossi, D. : Improvement of electromechanical actuating performances of a silicone dielectric elastomer by dispersion of titanium dioxide powder. IEEE Trans. on Dielectrics and Electrical Insulation, 12 (4) (2005), pp. 835–843Google Scholar
  285. 285.
    Pei, Q., Pelrine, R., Stanford, S., Kornbluh, R., Rosenthal, M.: Electroelastomer rolls and their application for biomimetic walking robots. Synth. Met. 135–136, 129–131, (2003)Google Scholar
  286. 286.
    Pei, Q., Rosenthal, M., Stanford, S., Prahlad, H., Pelrine, R.: Multiple-degrees-of-freedom electroelastomer roll actuators. Smart Mater. Struct. 13 (2004), pp. N86–N92Google Scholar
  287. 287.
    Kofod, G., Sommer-Larsen, P., Kornbluh, R. and Pelrine, R.: Actuation response of polyacrylate dielectric elastomers. J. Intell. Mater. Syst. Struct. 14 (12) (2003), pp. 787–793Google Scholar
  288. 288.
    Carpi, F., Chiarelli, P., Mazzoldi, A., De Rossi, D.: Electromechanical characterisation of dielectric elastomer planar actuators: comparative evaluation of different electrode materials and different counterloads. Sensors and Actuators A-Phys., 107 (2003), pp. 85–95CrossRefGoogle Scholar
  289. 289.
    Carpi, F. ; De Rossi, D. : Dielectric elastomer cylindrical actuators: electromechanical modelling and experimental evaluation. Mater. Sci. Eng. C, 24 (2004), pp. 555–562CrossRefGoogle Scholar
  290. 290.
    Jungmann, M., Matysek, M., Schlaak, H.F.: Electrostatic solid-state actuators with elastic dielectric and multilayer fabrication-technology. Proc. Actuator 2004, 14–16 June 2004, Bremen (2004), pp. 686–689Google Scholar
  291. 291.
    Carpi, F., Migliore, A., Serra, G. and De Rossi, D.: Helical dielectric elastomer actuators. Smart Materials and Structures, 14 (2005), pp. 1210–1216CrossRefGoogle Scholar
  292. 292.
    Carpi, F., Salaris, C. and De Rossi, D.: Folded dielectric elastomer actuators. Smart Mater. and Structures, 16 (2007), pp. S300–S305Google Scholar
  293. 293.
    Scilingo, E.P., Lorussi, F., Mazzoldi, A., De Rossi, D.: Strain-sensing fabrics for wearable kinaesthetic-like systems. IEEE Sensors J., vol. 3, no. 4 (2003), pp. 460–467CrossRefGoogle Scholar
  294. 294.
    De Rossi, D., Carpi, F., Lorussi, F., Mazzoldi, A., Paradiso, R., Scilingo, E.P., Tognetti, A.: Electroactive fabrics and wearable biomonitoring devices. AUTEX Research J., vol. 3, no. 4 (2003), pp. 180–185Google Scholar
  295. 295.
    De Rossi, D., Carpi, F., Lorussi, F., Paradiso, R., Scilingo, E.P., Tognetti, A.: Electroactive fabrics and wearable man-machine interfaces. In: Wearable electronics and photonics, Tao, X.-M. Ed., Cambridge: Woodhead (2005)Google Scholar
  296. 296.
    De Rossi, D., Carpi, F., Lorussi, F., Mazzoldi, A., Scilingo, E.P., Tognetti, A.: Electroactive fabrics for distributed, conformable and interactive systems. Proc. IEEE Sensors 2002, Hyatt Orlando, Florida, (October 2002)Google Scholar
  297. 297.
    Lorussi, F., Rocchia, W., Scilingo, E.P., Tognetti, A., De Rossi, D.: Wearable, redundant fabric-based sensor arrays for reconstruction of body segment posture. IEEE Sensors J., vol. 4, no. 6 (2004), pp. 807–818CrossRefGoogle Scholar
  298. 298.
    Singh Nalwa, H. Ed.: Ferroelectric polymers – Chemistry, physics and applications. New York: Marcel Dekker, 1995.Google Scholar
  299. 299.
    De Rossi, D., Lazzeri, L., Domenici, C., Nannini, A., Basser, P.: Tactile sensing by an electromechanochemical skin analog. Sensors Actuators, 17 (1989), pp. 107–114CrossRefGoogle Scholar
  300. 300.
    De Rossi, D., Nannini, A., Domenici, C.: Artificial sensing skin mimicking mechanoelectrical conversion properties of human derims. IEEE Trans. Biomed. Eng., 35 (2) (1988), pp. 83–92Google Scholar
  301. 301.
    Guckel, H.: Progress in magnetic microactuators. Microsystem Technol. 5 (1998), pp. 59–61CrossRefGoogle Scholar
  302. 302.
    Tang, W.C., Nguyen, T.C.H. and Howe, R.T.: Laterally driven polysilicon resonant microstructures. Sensors and Actuators A 20 (1992), pp. 25–32Google Scholar
  303. 303.
    Lutz, M., Golderer, W., Gerstenmeier, J., Marek, J., Maihofer, B., Mahler, S., Munzel, H. and Bischof, U.: A precision yaw rate sensor in silicon micromachining. Procs. Solid State Sensors and Actuators, 1997, vol. 2, Transducers ’97 Chicago (16–19 Jun. 1997), pp. 847–850Google Scholar
  304. 304.
    DeVoe, D. L.: Piezoelectric thin film micromechanical beam resonators. Sensors and Actuators A 88 (2001), pp. 263–272CrossRefGoogle Scholar
  305. 305.
    www.terfenoltruth.comGoogle Scholar
  306. 306.
    Quandt, E. and Seemann, K.: Fabrication of giant magnetostrictive thin film actuators. Proc. IEEE MEMS 1995 (1995), pp. 273–277.Google Scholar
  307. 307.
    Freygang, M., Haffner, H., Messner, S. and Schmidt, B.: A New Concept Of A Bimetallically Actuated, Normally-Closed Microvalve. Proc. Transducers ’95, Stockholm (1995), pp. 73–74Google Scholar
  308. 308.
    Aikele, M., Bauer, K., Ficker, W., Neubauer, F., Prechtel, U., Schalk, J. and Seidel H.: Resonant accelerometer with self-test. Sensors and Actuators A: Physical, 92 (2001), pp. 161–164CrossRefGoogle Scholar
  309. 309.
    Kohl, M.: Shape memory microactuators. 247 p., Springer, Berlin (2004)Google Scholar
  310. 310.
    Hamberg, M.W., Neagu, C., Gardeniers, J.G.E., Ijntema, D.J. and Elwenspoek, M.: An Electrochemical Micro Actuator. Proc. MEMS ’95, Amsterdam, The Netherlands (1995)Google Scholar
  311. 311.
    Bosch, D., Heimhofer, B., Mück, G., Seidel, H., Thumser, U. and Welser, W.: A silicon microvalve with combined electromagnetic /electrostatic actuation. Sensors and Actuators A 37–38 (1993), pp. 684–692Google Scholar
  312. 312.
    Fu, Y., Ghantasala, M.K., Harvey, E.C. and Qin, L.: Design and fabrication of a hybrid actuator. Smart Materials and Structures 14 (2005), pp. 488–495CrossRefGoogle Scholar
  313. 313.
    Hue, P.-Le: Progress and trends in ink-jet printing technology. J. Imaging Sci. and Technol., 42 (1998), pp. 49–62Google Scholar
  314. 314.
    Wirtl, J.: Die Piezokeramische Pille öffnet den Weg zur leistungslosen Ventilansteuerung. Firmenschrift der Hoerbiger Fluidtechnik GmbH, D-86956 SchongauGoogle Scholar
  315. 315.
    Jerman, H.: Electrically-Activated, Normally-Closed Diaphragm Valves. Proc. MEMS ’91, Nara, Japan (1991)Google Scholar
  316. 316.
    Zdeblick, M.J., Anderson, R., Jankowski, J., Kline-Schoder, B. and Christel, L., Miles, R., Weber, W.: Thermopneumatically Actuated Microvalves and Integrated Electro-Fluidic Circuits. Proc. Actuator 94, Bremen (1994), pp. 56–60Google Scholar
  317. 317.
    Mettner, M., Huff, M., Lober, T. and Schmidt, M.: How to design a microvalve for High pressure Application. Robert Bosch GmbH, 70469 Stuttgart (1990)Google Scholar
  318. 318.
    Shikida, M., Sato, K.: Characteristics of an Electrostatically driven Gas Valve under High Pressure Conditions. Proc. MEMS ’94, Osio, Japan (1994)Google Scholar
  319. 319.
    Zengerle, R.: Mikro-Membranpumpen als Komponenten für Mikro-Fluidsysteme. Verlag Shaker, Aachen (1994), ISBN 3–8265-0216–7Google Scholar
  320. 320.
    Zengerle, R., Ulrich, J., Kluge, S., Richter, M. and Richter, A.: A Bidirectional Silicon Micropump. Proc. MEMS ’95, Amsterdam (1995), pp. 19–24Google Scholar
  321. 321.
    Gerlach, T., Wurmus, H.: Working principle and performance of the dynamic micropump. Proc. MEMS ’95, Amsterdam, The Netherlands (1995), pp. 221–226Google Scholar
  322. 322.
    Olson, A., Enoksson, P., Stemme, G. and Stemme, E.: A valve-less planar pump in silicon. Proc. Transducers ’95, Stockholm (25–29 Jun. 1995), pp. 291–294Google Scholar
  323. 323.
    Keefe, D.O., Herlihy, C.O., Gross, Y. and Kelly, J.G.: Patient-controlled analgesia using a miniature electrochemically driven infusion pump. British J. Anaesthesia (1994), pp. 843–846Google Scholar
  324. 324.
    Stehr, M., Messner, S., Sandmaier, H. and Zengerle, R.: The VAMP – A new device for handling liquids or gases. Sensors and Actuators A–Physical 57 (1996), pp. 153–157CrossRefGoogle Scholar
  325. 325.
    Howitz, S., Wegener, T., Fiehn, H.: Mikrotropfeninjektor. FZ Rossendorf e.V., GeSiM mbH DresdenGoogle Scholar
  326. 326.
    Hornbeck, L.J.: Digital Light Processing and MEMS: Timely Convergence for a Bright Future. Plenary Session, SPIE Micromachining and Microfabrication ’95, Austin, Texas (October 24, 1995)Google Scholar
  327. 327.
    Gerlach, T., Enke, D., Frank, Th., Hutschenreuther, L., Schacht, H.-J. and Schüler, R.: Towards an integrated microsystem for the automatic adjustment of mono-mode optical waveguides. Workshop MicroMechanics Europe MME ’96, Barcelona (21–22 Oct. 1996)Google Scholar
  328. 328.
    Fan, L., Tai, Y. and Muller, R.S.: IC-processed electrostatic micromotors. Sensors and Actuators 20 (1989), pp. 41–47CrossRefGoogle Scholar
  329. 329.
    Kämper, K.-P., Ehrfeld, W., Hagemann, B., Lehr, H., Michel, F., Schirling, A., Thürigen, Ch. and Wittig, Th.: Electromagnetic permanent magnet micromotor with integrated micro gear box. Proc. Actuator 96, Bremen (1996), pp. 429–436Google Scholar
  330. 330.
    Janocha, H. (Ed.): Actuators – Basics and Applications. Springer, Berlin Heidelberg New York (2004)Google Scholar
  331. 331.
    Newnham, R.E., Ruschau, G.R.: Smart Electroceramics. J. Am. Ceram. Soc. 74, 3 (1991), pp. 463–480CrossRefGoogle Scholar
  332. 332.
    Kuhnen, K.: Inverse Steuerung piezoelektrischer Aktoren mit Hysterese-, Kriech- und Superpositionsoperatoren. Doctoral Thesis, Saarland University, Shaker, Aachen (2001)Google Scholar
  333. 333.
    Gabbert, U., Tzou, H.S. (Eds.): Smart Structures and Structronic Systems. Proc. IUTAM Symp., Magdeburg (2000); Kluwer Academic, Dordrecht/Boston/London (2001)Google Scholar
  334. 334.
    Bergqvist, A.: On magnetic hysteresis modeling. Royal Inst. Technol., Electric Power Eng., Stockholm (1994)Google Scholar
  335. 335.
    Föllinger, O.: Regelungstechnik. Oldenbourg-Verlag, München, Wien (1990)Google Scholar
  336. 336.
    Kuhnen, K., Janocha, H., Schommer, M.: Exploitation of inherent sensor effects in magnetostrictive actuators. Proc. 9th Int. Conf. on New Actuators, Bremen (2004), pp. 367–370Google Scholar
  337. 337.
    Kuhnen, K., Janocha, H.: Self-sensing Solid-state Actuators. In: 6.43 Control Systems, Robotics and Automation, edited by H. Unbehauen, In: Encyclopedia of Life Support Systems (EOLSS). Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK (2004), [http://www.eolss.net]Google Scholar
  338. 338.
    Clephas, B.: Untersuchung von hybriden Festkörperaktoren. Doctoral Thesis, Saarland University, Herbert Utz, München (1999)Google Scholar
  339. 339.
    Clephas, B., Janocha, H.: Simultaneous sensing and actuation of a magnetostrictive transducer. Proc. SPIE Smart Structures and Mater. 3329, San Diego (1998), pp. 174–184Google Scholar
  340. 340.
    Schommer, M., Janocha, H.: Rekonstruktion der Belastung eines magnetostriktiven Aktors durch Signalanalyse. ETG-Fachbericht of the ETG-/GMM-Fachtagung 2004, Darmstadt (2004), pp. 189–194 (CD-ROM)Google Scholar
  341. 341.
    Brokate, M., Sprekels, J.: Hysteresis and phase transitions. Springer, Berlin Heidelberg New York (1996)Google Scholar
  342. 342.
    Jones, L., Garcia, E., Waites, H.: Self-sensing control as applied to a stacked PZT actuator used as a micropositioner. Smart Structures and Mater., 3 (1994), pp. 147–156CrossRefGoogle Scholar
  343. 343.
    Dosch, J.J., Inman, D.J., Garcia, E.: A self-sensing piezoelectric actuator for collocated control. J. Intell. Mater. Syst. and Struct., 3 (1992), pp. 166–185CrossRefGoogle Scholar
  344. 344.
    Vallone, P.: High-performance piezo-based self-sensor for structural vibration control. SPIE Smart Structures and Mater. Conf., 2443, SPIE (1995), pp. 643–655Google Scholar
  345. 345.
    Cole, D.J., Clark, R.L.: Adaptive compensation of piezoelectric sensoriactuator. J. Intell. Mater. Syst. and Struct., 5 (1994), pp. 665–672CrossRefGoogle Scholar
  346. 346.
    Vipperman, J., Clark, R.: Implementation of an adaptive piezoelectric sensoriactuator. AIAA J., 34 (1996), pp. 2102–2109CrossRefGoogle Scholar
  347. 347.
    Ko, B., Tondue, B.H.: Acoustic control using a self-sensing actuator. J. Sound and Vibration, 187 (1995), pp. 145–165CrossRefGoogle Scholar
  348. 348.
    Pratt, J., Flatau, A.B.: Developement and analysis of a self-sensing magnetostrictive actuator design. Proc. SPIE Smart Structures and Mater. 1917, Albuquerque (1993) pp. 952–961Google Scholar
  349. 349.
    Banks, H.T., Smith, R.C.: Hysteresis Modeling in Smart Material Systems. J. Appl. Mechanics and Eng. 5, 1 (2000) pp. 31–45Google Scholar
  350. 350.
    Visintin, A.: Differential Models of Hysteresis. Springer, Berlin Heidelberg (1994)Google Scholar
  351. 351.
    Mayergoyz, I.D.: Mathematical Models of Hysteresis. Springer, Berlin Heidelberg New York (1991)Google Scholar
  352. 352.
    Krasnosel’skii, M.A., Pokrovskii, A.V.: Systems with Hysteresis. Springer, Berlin (1989)Google Scholar
  353. 353.
    Kuhnen, K., Janocha, H.: Inverse feedforward controller for complex hysteretic nonlinearities in smart material systems. Control and Intell. Sys. 29, 3 (2001), pp. 74–83Google Scholar
  354. 354.
    Kuhnen, K.: Modeling, Identification and Compensation of complex hysteretic Nonlinearities – A modified Prandtl-Ishlinskii approach. Eur. J. of Control 9, 4 (2003), pp. 407–418CrossRefGoogle Scholar
  355. 355.
    Webb, G.V., Lagoudas, D.C., Kurdila, A.J.: Hysteresis Modeling of SMA Actuators for Control Applications. J. of Intell. Mater. Sys. and Structures, 9 (1998), pp. 432–448CrossRefGoogle Scholar
  356. 356.
    Krejci, P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakotosho, Tokyo, Gakuto Int. Series Math. Sci. & Appl. 8 (1996)Google Scholar
  357. 357.
    Krejci, P., Kuhnen, K.: Inverse Control of Systems with Hysteresis and Creep. IEE Proc. Control Theory Appl. 148, 3 (2001), pp. 185–192CrossRefGoogle Scholar
  358. 358.
    Jones L., Garcia, E.: Novel approach to self-sensing actuation. SPIE Smart Structures and Mater. Conf. 3041, SPIE (1997), pp. 305–314Google Scholar
  359. 359.
    Kortendieck, H.: Entwicklung und Erprobung von Modellen zur Kriech- und Hysteresiskorrektur. VDI, Düsseldorf (1993)Google Scholar
  360. 360.
    Kuhnen, K., Janocha, H.: Inverse Steuerung für den Groß signalbetrieb von Piezoaktoren. at-Automatisierungstechnik 50, 9 (2002), pp. 439–450CrossRefGoogle Scholar
  361. 361.
    Janocha, H., Pesotski, D., Kuhnen, K.: FPGA-Based Compensator of Hysteretic Actuator Nonlinearities for Highly Dynamic Applications. Proc. 10th Int. Conf. on New Actuators, Bremen (2006), pp. 1013–1016Google Scholar
  362. 362.
    www.dass.deGoogle Scholar
  363. 363.
    Janocha, H., Stiebel, Ch. and Würtz, Th.: Power Amplifiers for Piezoelectric Actuators. In: Preumont, A. (ed.) Responsive Systems for Active Vibration Control, Kluwer (2002), pp. 379–391Google Scholar
  364. 364.
    Janocha, H., Pesotski, D. and Kuhnen, K.: FPGA-Based Compensator of Hysterestic Actuator Nonlinearities for Highly Dynamic Applications. Proc. 10th Int. Conf. on New Actuators, Bremen, Germany (14-16 June 2006), pp. 1013–1016Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Hartmut Janocha
    • 1
  • Ronan Leletty
    • 2
  • Frank Claeyssen
    • 2
  • Goran Engdahl
    • 2
  • Jürgen Hesselbach
    • 3
  • William A. Bulloug
    • 4
  • J. David Carlson
    • 5
  • A. Mazzoldi
  • Federico Carpi
    • 6
  • Danilo de Rossi
    • 6
  • Helmut Seidel
    • 7
  • Klaus Kuhnen
    • 1
  • Thomas Würtz
    • 1
  1. 1.Lehrstuhl für ProzessautomatisierungUniversität des SaarlandesSaarbrückenGermany
  2. 2.CEDRAT TechnologiesMeylan CedexFrance
  3. 3.Institut für Werkzeugmaschinen und FertigungstechnikTU BraunschweigBraunschweigGermany
  4. 4.Department of Mechanical EngineeringThe University of SheffieldSheffieldUnited Kingdom
  5. 5.LORD CorporationCaryUSA
  6. 6.Faculty of EngineeringUniversity of PisaPisaItaly
  7. 7.Institute for Micromechanics, Microfluidics/MicroactuatorsUniversity of SaarlandSaarbrückenGermany

Personalised recommendations