Multifunctional Materials: The Basis for Adaptronics

  • Wenwu Cao


Chapter 3 attends to multifunctional materials as one of the essential requisites for the development of adaptronic systems. Fundamentals of diverse functional materials important for adaptronic applications are described from the standpoint of material science. A special section addresses the possibilities of achieving increased functionality through targeted material engineering.


Domain Wall Shape Memory Alloy Functional Material Morphotropic Phase Boundary Domain Wall Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moulson, A.J., Herbert, J.M.: Electroceramics: Materials, Properties, Applications. Chapman & Hall, London, ISBN 0412294907 (1990)Google Scholar
  2. 2.
    Evans, A.G.: Science and Technology of Zirconia II, Advances in Ceramics. Proc. 2nd Int. Conf. on the Science and Technology of Zirconia; N. Claussen, M. Rühle, and A.H. Heuer (Ed.), Amer. Ceram. Soc., Vol. 12 (1984), pp. 193–212Google Scholar
  3. 3.
    Muddle, B.C., Hannink, R.H.J.: Crystallography of the Tetragonal to Monoclinic Transformation in MgO-Partially-Stabilized Zirconia. J. Amer. Ceram. Soc., Vol. 69, No. 7 (1986) pp. 547–555CrossRefGoogle Scholar
  4. 4.
    Shirane, G., Pepinsky, R., Frazer, D.C.: X-ray and Neutron Diffraction Study of Ferroelectric PbTiO 2 . Acta Crystallographica. Int. Union of Crystallography, Vol. 9, No. 2 (1956), pp. 131–140Google Scholar
  5. 5.
    Merz, W.J.: The Electric and Optical Behavior of BaTiO 3 Single-Domain Crystals. Phys. Rev., Vol. 76, No. 8 (1949), pp. 1221–1225CrossRefGoogle Scholar
  6. 6.
    Wang, Z.L., Kang, Z.C.: Functional and Smart Materials: Structural Evolution and Structure Analysis. Plenum, New York, ISBN 0306456516 (1998)Google Scholar
  7. 7.
    Luchaninov, A.G., Shil’nikov, A.V., Shuvolov, L.A., Shipkova, I.JU.: The Domain Processes and Piezoeffect in Polycrystalline Ferroelectrics. Ferroelectrics, Vol. 98 (1989), pp. 123–126Google Scholar
  8. 8.
    Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Holt, Rinehart and Winston, ISBN 0030839939 (1976)Google Scholar
  9. 9.
    Cao, W., Cross, L.E.: Theory of Tetragonal Twin Structures in Ferroelectric Perovskites with a First-order Phase Transition. Phys. Rev. B, Vol. 44, No. 1 (1991), pp. 5–12CrossRefGoogle Scholar
  10. 10.
    Cao, W., Krumhansl, J.A., Gooding, R.: Defect-induced Heterogeneous Transformations and Thermal Growth in Athermal Martensite. Phys. Rev. B, Vol. 41 (1990), pp. 11319–11327CrossRefGoogle Scholar
  11. 11.
    Newnham, R.E.: Composite Electroceramics. Annual Review of Materials Science, Vol. 16 (1986), pp. 47–68CrossRefGoogle Scholar
  12. 12.
    Clark, A.E.: Ferromagnetic Materials: a Handbook on the Properties of Magnetically Ordered Substances. Wohlfarth, E.P. (Ed.); North-Holland, Vol. 1, ISBN 0444898530 (1980)Google Scholar
  13. 13.
    Newnham, R.E.: Molecular Mechanisms in Smart Materials. Materials Research Soc. Bulletin, Vol. 22, No. 5 (1997), pp. 20–34Google Scholar
  14. 14.
    Park, S.E., Shrout, T.: Relaxor Based Ferroelectric Single Crystals for Electro-mechanical Actuators. Materials Research Innovations, Vol. 1, No. 1 (1997), pp. 20–25CrossRefGoogle Scholar
  15. 15.
    Yin, J., Jiang, B., Cao, W.: Elastic, Piezoelectric, and Dielectric Properties of 0.955Pb(Zn 1/3 Nb 2/3 )O 3 -0.045PbTiO 3 Single Crystal with Designed Multidomains. IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 47, No. 1 (Jan. 2000), pp. 285–291Google Scholar
  16. 16.
    Zhang, R., Jiang, B., Cao, W.: Elastic, Piezoelectric, and Dielectric Properties of Multidomain 0.67Pb(Mg 1/3 Nb 2/3 )O 3 -0.33PbTiO 3 Single Crystals. J. Appl. Phys., Vol. 90 (2001), pp. 3471–3475CrossRefGoogle Scholar
  17. 17.
    Nomura, S., Takahashi, T., Yokomizo, Y.: Ferroelectric Properties in the System Pb(Zn 1/3 Nb 2/3 )O 3 -PbTiO 3. J. Physical Society of Japan, Vol. 27 (1969), p. 262CrossRefGoogle Scholar
  18. 18.
    Skinner, D.P., Newnham, R.E., and Cross, L.E.: Flexible Composite Transducers. Materials Research Bulletin, Vol. 13, No. 6 (1978), pp. 599–607CrossRefGoogle Scholar
  19. 19.
    Cao, W., Zhang, Q., Cross, L.E.: Theoretical Study on the Static Performance of Piezoelectric Ceramic-polymer Composites with 1-3 Connectivity. J. Applied Physics, Vol. 72 (1992), pp. 5814–5821CrossRefGoogle Scholar
  20. 20.
    Xu, Q.C., Yoshikawa, S., Belck, J.R., Newnham, R.E.: Piezoelectric Composites with High Sensitivity and High Capacitance for Use at High Pressures. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 38, No. 6 (1991), pp. 634–639Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Wenwu Cao
    • 1
  1. 1.Department of MathematicsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations