Skip to main content

On the Application of Clustering Techniques to Support Debugging Large-Scale Multi-Agent Systems

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4411)

Abstract

This work analyses the problematic of debugging a multi-agent system. It starts from the fact that MAS are a particular type of distributed systems in which the active entities are autonomous in the sense that behavior and knowledge of the whole system is distributed among agents. It situates the problem by firstly studying the classical approaches for conventional code debugging and also the techniques used in distributed systems in general. From this initial perspective, it tries to situate agent and multi-agent systems debugging. It finally proposes the use of conventional data mining tasks like clustering to, by summarising, help in debugging huge MAS.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdelwahed, S., Wonham, W.M.: Blocking detection in discrete event systems. In: Proceeding of the American Control Conference, Denver, Colorado, pp. 1673–1678 (2003)

    Google Scholar 

  2. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Specification and verification of agent interaction using social integrity constraints. Electronic Notes in Theoretical Computer Science 85(2) (2004)

    Google Scholar 

  3. Andrews, G.R.: Concurrent Programming. Principles and Practice. Addison-Wesley, Reading (1991)

    Google Scholar 

  4. Botía, J.A., Hernansáez, J.M., Gómez-Skarmeta, A.F.: Towards an approach for debugging mas through the analysis of acl messages. Computer Systems Science and Engineering 20 (2005)

    Google Scholar 

  5. Clarke, E.M., Grumber, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)

    Google Scholar 

  6. Cohen, P.R., Levesque, H.J.: Communicative actions for artificial agents. In: Proceedings of the First International Conference on Multi-Agent Systems (ICMAS-95), San Francisco, CA, June 1995, pp. 65–72 (1995)

    Google Scholar 

  7. Engler, D., Ashcraft, K.: Racerx: Effective, static detection of race conditions and deadlocks. In: Proceedings of the SOSP (2003)

    Google Scholar 

  8. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: Data Mining and Its Applications: A General Overview. In: Han, J., Simoudis, E., Fayyad, U. (eds.) The Second International Conference on Knowledge Discovery & Data Mining, August 1996, AAAI Press, Menlo Park (1996)

    Google Scholar 

  9. FIPA: FIPA Contract Net Interaction Protocol Specification. SC00030 (2002)

    Google Scholar 

  10. Foundation for Intelligent Physical Agents: FIPA Communicative Act Library Specification. SC00037 (2002)

    Google Scholar 

  11. Guha, S., Rastogi, R., Shim, K.: ROCK: A robust clustering algorithm for categorical attributes. Information Systems 25(5), 345–366 (2000), http://www.citeseer.nj.nec.com/guha00rock.html

    CrossRef  Google Scholar 

  12. Lam, D.N., Barber, K.S.: Comprehending agent software. In: AAMAS ’05: Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems, pp. 586–593. ACM Press, New York (2005)

    CrossRef  Google Scholar 

  13. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, Berkeley (1967)

    Google Scholar 

  14. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  15. Muller, J.P.: The Design of Intelligent Agents. A Layered Approach. In: Saad, Y., Yang, T., Ferreira, A., Rolim, J.D.P. (eds.) IRREGULAR 1996. LNCS, vol. 1117, Springer, Heidelberg (1996)

    Google Scholar 

  16. Musuvathi, M., Park, D.Y.W., Chou, A., Engler, D.R., Dill, D.L.: Cmc: A pragmatic approach to model checking real code. In: Proceedings of the OSDI (2002)

    Google Scholar 

  17. Poutakidis, D., Padgham, L., Winikoff, M.: Debugging multi-agent systems using design artifacts: The case of interaction protocols. In: AAMAS’02, Bologna, Italy, July (2002)

    Google Scholar 

  18. Poutakidis, D., Padgham, L., Winikoff, M.: An exploration of bugs and debugging in multi-agent systems. In: Zhong, N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, Springer, Heidelberg (2003)

    Google Scholar 

  19. Reisig, W.: Petri Nets, An Introduction. Springer, Berlin (1985)

    MATH  Google Scholar 

  20. Smith, R.R.: The contract net protocol: High-level communication and control in a distributed problem solver. In: Bond, A.H., Gasser, L. (eds.) Readings in Distributed Artificial Intelligence, pp. 357–366. Morgan Kaufmann Publishers, Los Altos (1988)

    Google Scholar 

  21. Wegrzyn, A., Karatkevich, A., Bieganowski, J.: Detection of deadlocks and traps in petri nets by means of thelen’s prime implicant method. International Journal of Applied Mathematics and Computer Science 14(1), 113–121 (2004)

    MathSciNet  Google Scholar 

  22. Whittaker, J.A.: What is software testing? and why it is so hard? IEEE Software, 70–79 (January 2000)

    Google Scholar 

  23. Wills, G., Keim, D.: Data visualization for domain exploration. In: Handbook of Data Mining and Knowledge Discovery, pp. 226–232. Oxford University Press, Oxford (2002)

    Google Scholar 

  24. Zhou, P., Qin, F., Liu, W., Zhou, Y., Torrellas, J.: iwatcher: Simple, general architectural support for software debugging. IEEE Micro, 50–56 (November 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rafael H. Bordini Mehdi Dastani Jürgen Dix Amal El Fallah Seghrouchni

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Botía, J.A., Hernansáez, J.M., Gómez-Skarmeta, A.F. (2007). On the Application of Clustering Techniques to Support Debugging Large-Scale Multi-Agent Systems. In: Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds) Programming Multi-Agent Systems. ProMAS 2006. Lecture Notes in Computer Science(), vol 4411. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71956-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71956-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71955-7

  • Online ISBN: 978-3-540-71956-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics