Advertisement

Ion Beam Devices for Material Processing and Analysis

  • F. Rüdenauer
  • H. W. P. Koops
  • G. Hobler
  • L. Palmetshofer
  • H. Bluhm

Keywords

Virtual Cathode Inertial Fusion Energy High Power Particle Beam Phase Shift Mask Electron Sheath 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Bird, J. Williams, Ion Beams for Materials Analysis (Academic, New York, 2003) Google Scholar
  2. [2]
    CEA, Sunnyvale/CAL. http://www.cea.com/tech.htm#rbs1 (2003)
  3. [3]
    Charles Evans & Associates, Sunnyvale/CA. http://www.cea.com/tech.htm
  4. [4]
    Harvard University, Materials Res. Ctr., Cambridge/MA. http://www.mrsec.harvard.edu/default.html (2003)
  5. [5]
    Proton microprobe, University of Oxford, Oxford, OX1 2JD, UK Google Scholar
  6. [6]
    CSIRO, Canberra/Australia. http://www.nmp.csiro.au/
  7. [7]
    Harvard University, Cambridge/MA. http://www.mrsec.harvard.edu/cams/cams.html
  8. [8]
    University of Oxford, Laboratory of Molecular Biophysics, Oxford/UK. http://biop.ox.ac.uk/www/top.html
  9. [9]
    High Voltage Engineering B.V., Amersfoort/The Netherlands. http://www.highvolteng.com/ (2003)
  10. [10]
    National Electrostatic Corp., Middleton/WI. http://www.pelletron.com/index.html (2003)
  11. [11]
    A. Benninghoven, F.G. Rüdenauer, H.W. Werner, Secondary Ion Mass Spectrometry (Wiley, New York, 1987) Google Scholar
  12. [12]
    CAMECA S.A., Courbevoie/France. http://www.cameca.fr/html/simstechnique.html (2003)
  13. [13]
    H.A. Storms, K.F. Brown, J.D. Stein, Anal. Chem. 49, 2023 (1977) CrossRefGoogle Scholar
  14. [14]
    R. Levi-Setti, Y.L. Wang, B. Crow, J. de Phys. 45(C9), 197 (1984) Google Scholar
  15. [15]
    denauerF.G. Rüdenauer denauerF.G. Rüdenauer F.G. Rüdenauer, W. Steiger, Concepts, applications and limits of 3D SIMS, in Proc. 11th Int. Congr. on X-Ray Optics and Microanalysis, ed. by J.D., Brown, R.H., Packwood, Univ. W. Ontario, London, 1987, pp. 210–217 Google Scholar
  16. [16]
    CAMECA S.A., Courbevoie/France. http://www.cameca.fr/index.html (2003)
  17. [17]
    Physical Electronics Corp., Eden Prairie/MI. http://www.phi.com/genf.asp?ID=296 (2003)
  18. [18]
    ION TOF GmbH, Münster/Germany. http://www.ion-tof.com/index.html (2003)
  19. [19]
    Physical Electronics, Eden Prairie/MN. http://www.phi.com/ (2003)
  20. [20]
    Surface Science Western, London/Ontario/Canada. http://www.uwo.ca/ssw/services/tofsimsfiles/tofmonel.html (2003)
  21. [21]
    FEI Company, Hillsboro, OR (2003) Google Scholar
  22. [22]
    C. Tuniz, J.R. Bird, D. Fink, G.F. Herzog, Accelerator Mass Spectrometry: Ultrasensitive Analysis for Global Science (CRC, Boca Raton, 1998) Google Scholar
  23. [23]
    G. Tamborini, D.L. Donohue, F.G. Rüdenauer, M. Betti, Evaluation of practical sensitivity and useful ion yield for uranium detection by secondary ion mass spectrometry, J. Anal. At. Spectrom. 19, 1–7 (2004) CrossRefGoogle Scholar
  24. [24]
    F.G. Rüdenauer, SIMS in space, in Secondary Ion Mass Spectrometry SIMS IX, ed. by A. Benninghoven, Y. Nihei, R. Shimizu (Wiley, Chichester 1995), pp. 901–905 Google Scholar
  25. [25]
    E. Zinner, Interstellar cloud material in meteorites, in Meteorites and the Early Solar System, ed. by J.F. Kerridge, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 956–983 Google Scholar
  26. [26]
    J.W. Rabalais, Principles and Applications of Ion Scattering Spectrometry (Wiley, New York, 2002) Google Scholar
  27. [27]
    B.B. Calipso, TU Eindhoven, Eindhoven, NL. http://www.calipso.nl/ (2003)
  28. [28]
    J. Orloff, L.W. Swanson, Study of a field-ionization source for microprobe application, J. Vac. Sci. Tech. 12(6) (1975) Google Scholar
  29. [29]
    J. Melngailis, J. Vac. Sci. Technol. B 5, 469 (1987) CrossRefGoogle Scholar
  30. [30]
    J. Orloff, M. Utlaut, L. Swanson, High Resolution Focused Ion Beams: FIB and its Applications (Kluwer Academic/Plenum, New York, 2003) Google Scholar
  31. [31]
    L.R. Harriott, J. Vac. Sci. Technol. B 11, 2012 (1993) CrossRefGoogle Scholar
  32. [32]
    H.W.P. Koops, R. Weiel, D.P. Kern, T.H. Baum, J. Vac. Sci. Technol. B 6(1), 477 (1988) CrossRefGoogle Scholar
  33. [33]
    K. Edinger, T. Kraus, J. Vac. Sci. Technol. B 18, 3190 (2000) CrossRefGoogle Scholar
  34. [34]
    T. Hoshino, M. Kawamori, T. Suzuki, S. Matsui, K. Mabuchi, J. Vac. Sci. Technol. B 22, 3158 (2004) CrossRefGoogle Scholar
  35. [35]
    S. Matsui, et al., J. Vac. Sci. Technol. B 21, 2732–2736 (2003) CrossRefGoogle Scholar
  36. [36]
    S. Matsui, et al., J. Vac. Sci. Technol. B 18, 3181–3184 (2000) CrossRefGoogle Scholar
  37. [37]
    L. Niewoehner, H.W.J. Wenz, Applications of focused ion beam systems in gunshot residue investigation, J. Forensic Sci. 44(1), 105–109 (1999) Google Scholar
  38. [38]
    W. Shockley, Forming semiconductor devices by ionic bombardment, U.S. Patent 2,787,564 (1957) Google Scholar
  39. [39]
    J. Lindhard, M. Scharff, H.E. Schiøtt, Range concepts and heavy ion ranges, Mat.-Fys. Medd. Dan. Vid. Selsk. 33(14) (1963) Google Scholar
  40. [40]
    M.T. Robinson, O.S. Oen, The channelling of energetic atoms in crystal lattices, Appl. Phys. Lett. 2, 30–32 (1963) CrossRefGoogle Scholar
  41. [41]
    R.B. Simonton, W. Class, Y. Erokhin, M. Mack, L. Rubin, Ion implantation, in Handbook of Semiconductor Manufacturing Technology, ed. by Y. Nishi, R. Doering (Marcel Dekker, New York, Basel, 2000), pp. 105–147 Google Scholar
  42. [42]
    J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985) Google Scholar
  43. [43]
    G. Hobler, Critical angles and low-energy limits to ion channeling in silicon, Radiat. Eff. Def. Sol. 139, 21–85 (1996) CrossRefGoogle Scholar
  44. [44]
    K.M. Klein, C. Park, S.-H. Yang, A.F. Tasch, Accurate and efficient two-dimensional modeling of boron implantation into single-crystal silicon, in IEDM Techn. Dig. IEEE (1991), pp. 697–700 Google Scholar
  45. [45]
    J.F. Ziegler, http://www.srim.org
  46. [46]
    G. Hobler, Monte Carlo simulation of two-dimensional dopant distributions at mask edges, Nucl. Instrum. Meth. B 96, 155–162 (1995) CrossRefGoogle Scholar
  47. [47]
    M. Posselt, B. Schmidt, T. Feudel, N. Strecker, Atomistic simulation of ion implantation and its application in Si technology, Mater. Sci. Eng. B 71, 128–136 (2000) CrossRefGoogle Scholar
  48. [48]
    G.K. Celler, S. Cristoloveanu, Frontiers of silicon-on-insulator, J. Appl. Phys. 93, 4955–4978 (2003) CrossRefGoogle Scholar
  49. [49]
    International Technology Roadmap for Semiconductors. http://public.itrs.net/ (2003)
  50. [50]
    D.W. Duff, L.M. Rubin, Ion implant equipment challenges for 0.18 µm and beyond, Sol. State Technol. (June issue) (1998) Google Scholar
  51. [51]
    M. Graf, T. Parrill, Low-energy ion implantation meets productivity challenges, Semicond. Intl. (April issue) (2004) Google Scholar
  52. [52]
    L. Rubin, Angle control in high-current ion implanters, Sol. State Technol. (Oct. issue) (2002) Google Scholar
  53. [53]
    L. Rubin, W. Morris, High-energy implanters and applications take off, Semicond. Intl. (April issue) (1997) Google Scholar
  54. [54]
    A. Anders (ed.), Handbook of Plasma Immersion Ion Implantation and Deposition (Wiley, New York, 2000) Google Scholar
  55. [55]
    Papers in: International Topical Conference on Electron Beam Research and Technology, ed. by G. Yonas, Albuquerque, N.M., SAND76-5122 (1975) Google Scholar
  56. [56]
    Papers in: 2nd International Topical Conference on High Power Electron and Ion Beam Research and Technology, ed. by J.A. Nation, R.N. Sudan, Cornell University, Ithaca, N.Y. (1977) Google Scholar
  57. [57]
    S.A. Goldstein, R. Lee, The ion induced pinch and enhancement of ion current by pinched electron and ion flow in relativistic diodes, Phys. Rev. Lett. 35, 1079–1082 (1975) CrossRefGoogle Scholar
  58. [58]
    S. Humpries, Intense pulsed ion beams for fusion applications, Nucl. Fusion 20, 1549–1612 (1980) Google Scholar
  59. [59]
    R.N. Sudan, R.V. Lovelace, Generation of intense ion beams in pulsed diodes, Phys. Rev. Lett. 31, 1174–1177 (1973) CrossRefGoogle Scholar
  60. [60]
    G.I. Kanel, K. Baumung, H. Bluhm, V.E. Fortov, Possible applications of the ion beams technique for investigations in the field of equation of state, Nucl. Instrum. Methods A 415, 509–516 (1988) CrossRefGoogle Scholar
  61. [61]
    J.P. VanDevender, H. Bluhm, Light ion accelerators for ICF, in Nuclear Fusion by Inertial Confinement, ed. by G. Velarde, Y. Ronen, J.M. Martinez-Val (CRC, Boca Raton, Ann Arbor, London, Tokyo, 1993) Google Scholar
  62. [62]
    H. Bluhm, P. Hoppé P. Hoppé P. Hoppé, Perspectives of high power pulse generators for the boron neutron capture therapy (BNCT) of tumors, in 12th IEEE Int. Pulsed Power Conf., ed. by C. Stallings, H. Kirbie, Monterey, USA, 1999, pp. 502–505 Google Scholar
  63. [63]
    J.J. Ramirez, The four stage HELIA experiment, in 5th IEEE Pulsed Power Conf., ed. by. P.J. Turchi, M.F. Rose, Arlington, Virginia, USA, pp. 143–146 Google Scholar
  64. [64]
    G.A. Moses, G.L. Kulcinski, D. Bruggink, R. Engelstad, E. Lovell, J. McFarlane, Z. Musicki, R. Petersen, I. Stanislavsky, L. Wittenberg, G. Kessler, U. Von Möllendorff, E. Stein, I. Smith, P. Corcoran, H. Nichimoto, J. Fockler, D. Cook, R. Olson, Overview of the LIBRA light ion beam fusion conceptual design, Fusion Technol. 15, 756–765 (1989) Google Scholar
  65. [65]
    J.E. Bailey, A.B. Filuk, A.L. Carson, D.J. Johnson, P. Lake, E.J. McGuire, T.A. Mehlhorn, T.D. Pointon, T.J. Renk, W.A. Stygar, Measurements of acceleration gap dynamics in a 20-TW applied-magnetic-field ion diode, Phys. Rev. Lett. 74, 1771–1774 (1995) CrossRefGoogle Scholar
  66. [66]
    T.A. Mehlhorn, J.E. Bailey, G.A. Chandler, R.S. Coats, M.E. Cuneo, M.S. Derzon, M.P. Desjarlais, R.J. Dukart, A.B. Filuk, T.A. Haill, H.C. Ives, D.J. Johnson, R.J. Leeper, T.R. Lockner, C.W. Mendel, P.R. Menge, L.P. Mix, A.R. Moats, W.B. Moore, T.D. Pointon, J.W. Poukey, J.P. Quintenz, S.E. Rosenthal, D. Rovang, C.L. Ruiz, S.A. Slutz, W.A. Stygar, D.F. Wenger, Progress in lithium beam power, divergence, and intensity at Sandia National Laboratories, in 10th Int. Conf. on High Power Particle Beams, San Diego, USA, ed. by W. Rix, R. White (NTIS, Springfield, 1994), pp. 53–60 Google Scholar
  67. [67]
    D.L. Hanson, M.E. Cuneo, P.F. McKay, J.E. Maenchen, R.S. Coats, J.W. Poukey, S.E. Rosenthal, W.E. Fowler, D.F. Wenger, M.A. Bernard, J.R. Chavez, W.F. Stearns, Operation of a high impedance applied-B extraction ion diode on the sabre positive polarity linear induction accelerator, in 9th Int. Conf. High Power Particle Beams, Washington DC, USA, ed. by D. Mosher, G. Cooperstein (NTIS, Springfield, 1994), pp. 781–787 Google Scholar
  68. [68]
    J.B. Greenly, R.K. Appartaim, J.C. Olson, L. Brisette, Extraction ion diode studies for optimised performance: divergence, ion species and parasitic load, in 10th Int. Conf. on High Power Particle Beams, San Diego, USA, ed. by W. Rix, R. White (NTIS, Springfield, 1994), pp. 398–401 Google Scholar
  69. [69]
    J.B. Greenly, R.K. Appartaim, J.C. Olson, Anode plasma dynamics in an extraction applied-B ion diode: effects on divergence, ion species and parasitic load, in 10th Int. Conf. High Power Particle Beams, Prague, Czech Republic, ed. by K. Jungwirth, J. Ullschmied (Tiskárna “K” Ltd., Prague, 1996), pp. 111–114 Google Scholar
  70. [70]
    H. Bluhm, P. Hoppé, H. Laqua, D. Rusch, Production and investigation of TW Proton beams from a annular diode using strong radial magnetic insulation fields and a preformed anode plasma source, Proc. IEEE 80, 995–1009 (1992) CrossRefGoogle Scholar
  71. [71]
    V. Licht, H. Bluhm, P. Hoppé P. Hoppé P. Hoppé, S.J. Yoo, Time dependent field and particle density measurements in the acceleration gap of a high power ion diode, in 12th Int. Conf. High Power Particle Beams, Haifa, Israel, 1998, ed. by M. Markovits, J. Shiloh, pp. 203–207 Google Scholar
  72. [72]
    O. Buneman, R.H. Levy, L.M. Linson, Stability of crossed-field electron beams, J. Appl. Phys. 37, 3203–3222 (1966) CrossRefGoogle Scholar
  73. [73]
    R.W. Lemke, S.A. Slutz, A full mode set electromagnetical stability analysis of magnetically insulated ion diodes, Phys. Plasmas 2, 549 (1995) CrossRefGoogle Scholar
  74. [74]
    M.P. Desjarlais, Theory of applied-B ion diodes, Phys. Fluids B 1, 1709–1720 (1989) CrossRefGoogle Scholar
  75. [75]
    J.P. Quintenz, D.B. Seidel, M.L. Kiefer, T.D. Pointon, R.S. Coats, S.E. Rosenthal, T.A. Mehlhorn, M.P. Desjarlais, N.A. Krall, Simulation codes for light-ion diode modeling, Laser Part. Beams 12, 283–324 (1994) CrossRefGoogle Scholar
  76. [76]
    H. Bluhm, P. Hoppé P. Hoppé P. Hoppé, H. Bachmann, W. Bauer, K. Baumung, L. Buth, H. Laqua, A. Ludmirski, D. Rusch, O. Stoltz, S. Yoo, Stability and operating characteristics of the applied B proton extraction diode on KALIF, in 10th Int. Conf. High Power Particle Beams, San Diego, USA, ed. by W. Rix, R. White (NTIS, Springfield, 1994), pp. 77–82 Google Scholar
  77. [77]
    Y. Maron, E. Sarid, E. Nahshoni, O. Zahavi, Time-dependent spectroscopic observation of the magnetic field in a high-power-diode plasma, Phys. Rev. A 39, 5856–5862 (1989) CrossRefGoogle Scholar
  78. [78]
    S. Yoo, Spektroskopische Messungen im Anodenplasma einer fremdmagnetisch isolierten Hochleistungs-Ionendiode, Ph.D. thesis, University Karlsruhe, FZKA 5976, 1997 Google Scholar
  79. [79]
    V. Licht, H. Bluhm, A sensitive dispersion interferometer with high temporal resolution for electron density measurements, Rev. Sci. Instrum. 71, 2710–2015 (2000) CrossRefGoogle Scholar
  80. [80]
    S.A. Slutz, J.W. Poukey, T.D. Pointon, Simulations of magnetically insulated multistage ion diodes, Phys. Plasmas 1(6), 2072–2081 (1994) CrossRefGoogle Scholar
  81. [81]
    T. Lockner, S. Slutz, D.J. Johnson, M. Desjarlais, J. Poukey, Results of the first 2-stage diode experiments on PBFAII, in 10th Intl. Conf. on High Power Particle Beams, San Diego, USA, ed. by W. Rix, R. White (NTIS, Springfield, 1994), pp. 61–64 Google Scholar
  82. [82]
    S. Miyamoto, K. Yasuike, K. Imasaki, C. Yamanaka, S. Nakai, Intense light ion beam divergence in single and two-stage diode, in 15th Int. Symp. on Discharges and Electrical Insulation in Vacuum, Darmstadt, Germany, ed. by D. König (VDE-Verlag, Berlin, Offenbach, 1992), pp. 711–715 Google Scholar
  83. [83]
    T.R. Lockner, S. Slutz, J.W. Poukey, W.A. Stygar, Theoretical and experimental studies of the 2-stage ion diode, in 9th IEEE Int. Pulsed Power Conf., Albuquerque, USA, 1993, ed. by K. Prestwich, W. Baker, pp. 714–717 Google Scholar
  84. [84]
    S.A. Slutz, M.P. Desjarlais, Theory of multistage intense ion beam acceleration, J. Appl. Phys. 67(11), 6705–6717 (1990) CrossRefGoogle Scholar
  85. [85]
    C.K. Birdsall, W.B. Bridges, Space-charge instabilities in electron diodes and plasma converters, J. Appl. Phys. 32(12), 2611 (1961) CrossRefGoogle Scholar
  86. [86]
    S.A. Slutz, Ion emission from anode foils during multistage acceleration of intense ion beams, Phys. Fluids B 5(1), 209–215 (1993) CrossRefGoogle Scholar
  87. [87]
    M.E. Cuneo, The effect of electrode contamination, cleaning and conditioning on high-energy pulsed-power device performance, IEEE Trans. Dielectr. Electr. Insulat. 6(4), 469–485 (1999) CrossRefGoogle Scholar
  88. [88]
    M.E. Cuneo, P.R. Menge, D.L. Hanson, W.E. Fowler, M.E. Bernard, G.R. Ziska, A.B. Filuk, T.D. Pointon, R.A. Vesey, D.R. Welch, J.E. Bailey, M.P. Desjarlais, T.R. Lockner, T.A. Mehlhorn, S.A. Slutz, M.A. Stark, Results of vacuum cleaning techniques on the performance of LiF field-threshold ion sources on extraction applied-B ion diodes at 1-10 TW, IEEE Trans. Plasma Sci. 25(2), 229–251 (1997) CrossRefGoogle Scholar
  89. [89]
    R.A. Vesey, T.D. Pointon, M.E. Cuneo, T.A. Mehlhorn, J.E. Bailey, D.J. Johnson, W.A. Stygar, Electron-anode interactions in particle-in-cell simulations of applied-B ion diodes, Phys. Plasmas 6(8), 3369–3387 (1999) CrossRefGoogle Scholar
  90. [90]
    H. Laqua, H. Bluhm, L. Buth, P. Hoppé, Properties of the nonquilibrium plasma from a pulsed sliding discharge in a hydrogen gas layer desorbed from a metal hydride film, J. Appl. Phys. 77(11), 5545–5552 (1995) CrossRefGoogle Scholar
  91. [91]
    D.R. Welch, M.E. Cuneo, C.L. Olson, T.A. Mehlhorn, Gas breakdown effects in the generation and transport of light ion beams for fusion, Phys. Plasmas 3, 2113–2121 (1996) CrossRefGoogle Scholar
  92. [92]
    D.R. Welch, C.L. Olson, Self-pinched transport for ion-driven inertial confinement fusion, Fusion Eng. Des. 32-33, 477–483 (1996) CrossRefGoogle Scholar
  93. [93]
    D.V. Rose, P.F. Ottinger, D.R. Welch, B.V. Oliver, C.L. Olson, Numerical simulations of self-pinched transport of intense ion beams in low-pressure gases, Phys. Plasmas 6(10), 4094–4103 (1999) CrossRefGoogle Scholar
  94. [94]
    P.F. Ottinger, F.C. Young, S.J. Stephanakis, D.V. Rose, J.M. Neri, B.V. Weber, M.C. Myers, D. Hinshelwood, D. Mosher, C.L. Olson, D.R. Welch, Self-pinched transport of an intense proton beam, Phys. Plasmas 7(1), 346–358 (2000) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • F. Rüdenauer
  • H. W. P. Koops
  • G. Hobler
  • L. Palmetshofer
  • H. Bluhm

There are no affiliations available

Personalised recommendations