Advertisement

Electron Beam Devices for Materials Processing and Analysis

  • H. Bluhm
  • B. Han
  • A. G. Chmielewski
  • D. von Dobeneck
  • U. Gohs
  • J. Gstöttner
  • G. Mattausch
  • H. Morgner
  • H. W. P. Koops
  • A. Reichmann
  • O. Röder
  • S. W. Schulz
  • B. Wenzel
  • O. Zywitzki

Keywords

Electron Beam Work Piece Spherical Aberration Electron Beam Melting Chromatic Aberration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. von Pirani, U.S. Patent 848,600 (1907) Google Scholar
  2. [2]
    E. Riecke, Ann. Phys. Chem. 13, 191–194 (1881) Google Scholar
  3. [3]
    E. Wiechert, Nachr. d., Kgl. Ges. d. Wiss. zu Göttingen, Math.-Phys. Kl. 260–293 (1898) Google Scholar
  4. [4]
    C. Samson, Ann. Phys. 55, 606–632 (1918) Google Scholar
  5. [5]
    D. Gabor, Arch. Elektrotech. 16, 296–302 (1926) CrossRefGoogle Scholar
  6. [6]
    H. Busch, Arch. Elektrotech. 18, 583–594 (1927) CrossRefGoogle Scholar
  7. [7]
    E. Ruska, M. Knoll, Z. Techn. Phys. 12, 389–400, 448 (1931) Google Scholar
  8. [8]
    M. Knoll, E. Ruska, Ann. Phys. 12, 607–661 (1932) CrossRefGoogle Scholar
  9. [9]
    M. Knoll, F.G. Houtermans, W. Schulze, Verh. d. Dt. Phys. Ges. 13, 23, 24 (1932) Google Scholar
  10. [10]
    M. Knoll, E. Ruska, Das Elektronenmikroskop, Z. Phys. 78, 318–339 (1932) CrossRefGoogle Scholar
  11. [11]
    R. Rüdenberg, Elektronenmikroskop, Naturwissenschaften 20, 522 (1932) CrossRefGoogle Scholar
  12. [12]
    E. Brüche, O. Scherzer, Geometrische Elektronenoptik (Geometrical Electron Optics) (Springer, Berlin, 1934), 332 pp Google Scholar
  13. [13]
    E. Brüche, H. Johannson, Elektronenoptik und Elektronenmikroskop (Electron optics and the electron microscope) Naturwissenschaften 20, 353–358 (1932) CrossRefGoogle Scholar
  14. [14]
    llerE.W. Müller llerE.W. Müller E.W. Müller, Diss. Techn., Hochschule Berlin 1936; Z. Phys. 102, 734–761 (1936); Z. Techn. Phys. 77, 412416 (1936); Z. Phys. 106, 541–550 (1937); Ergebn. Exakt. Naturwiss. 27, 290–360 (1953) Google Scholar
  15. [15]
    M. Knoll, Z. Techn. Phys. 16, 467–475 (1935) Google Scholar
  16. [16]
    M. von Ardenne, Z. Phys. 109, 553-572 (1938); Z. Techn. Phys. 19, 407–416 (1938) Google Scholar
  17. [17]
    hleR. Rühle hleR. Rühle R. Rühle, DRP 764927 (1939) Google Scholar
  18. [18]
    K.H. Steigerwald, Phys. Verhandlungen 4, 123 (1953) Google Scholar
  19. [19]
    J.A. Stohr, Vacuum welding by electron beam, Nucl. Power 3(6), 272 (1958) Google Scholar
  20. [20]
    R. Bakish, Introduction to Electron Beam Technology (Wiley, New York, 1962) Google Scholar
  21. [21]
    S. Schiller, U. Heisig, S. Panzer, Electron Beam Technology (Wiley, New York, 1982) Google Scholar
  22. [22]
    S. Schiller, U. Heisig, S. Panzer, Elektronenstrahltechnologie (Verlag Technik, Berlin, 1977) Google Scholar
  23. [23]
    M. von Ardenne, Tabellen zur Angewandten Physik, vol. 1–3 (VEB Deutscher Verlag, der Wissenschaften, 1973) 2. Auflage Google Scholar
  24. [24]
    E. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung (Contributions to the theory of the microscope and microscopical observation) M. Schultze’s Arch. f. mikroskopische Anatomie IX, 413–468 (1873); E. Abbe, Ges. Abh. 1, 45–100 (1904) Google Scholar
  25. [25]
    H. von Helmholtz, Über die Grenzen der Leistungsfähigkeit der Mikroskope (On the limits of the Performance of microscopes) Monatsber. d. Akad. d. Wiss. zu Berlin, 625–626 (1873) Google Scholar
  26. [26]
    L. De Broglie, Recherches sur la theorie des quanta (Researches on the theory of quanta) These, Masson & Cie, Paris, 1924; Ann. de Phys. 3, 22–128 (1925) Google Scholar
  27. [27]
    W. Glaser, Grundlagen der Elektronenoptik (Springer, Wien, 1952); H. Seiler, Abbildung von Oberflächen mit Elektronen, Ionen und Röntgenstrahlen, BI Hochschultaschenbücher 428/428a (1968) Google Scholar
  28. [28]
    G. Liebmann, E.M. Grad, Imaging properties of a series of magnetic electron lenses, Proc. Phys. Soc. B 64, 956 (1951) CrossRefGoogle Scholar
  29. [29]
    EO3D by E. Munroe MEBS: Munro’s Electron Beam Software Ltd., London, UK Google Scholar
  30. [30]
  31. [31]
    SPOC by Lencova at lencova@cmail.cz Google Scholar
  32. [32]
    cheE. Brüche cheE. Brüche E. Brüche, O. Scherzer, Geometrische Elektronenoptik (Springer, Berlin, 1934); B. von Borries, Die Übermikroskopie (Verlag Dr. W. Saenger, Berlin, 1949); P.W. Hawkes, Image Processing and Computer Aided Design in Electron Optics (Academic, London, 1973), p. A 68; El Kareh, Electron Beams, Lenses and Optics (Academic, New York, 1970), Bd. 1 and 2 Google Scholar
  33. [33]
    T.M. Mulvey, M.J. Wallingtom, Electron lenses, Rep. Prog. Phys. 36, 347 (1973) CrossRefGoogle Scholar
  34. [34]
    O. Scherzer, J. Appl. Phys. 20, 20 (1949) zbMATHCrossRefGoogle Scholar
  35. [35]
    F. Schleich, in Proc. 2 Electron Beam Processing Seminar, US Trade Center Frankfurt, 3f1, June 1972 Google Scholar
  36. [36]
    M. von Ardenne, Tabellen zur Angewandten Physik, Bd. I (VEB-Verlag der Wiss., Berlin, 1962); P.W. Hawkes, Electron Optics and Electron Microscopy (Taylor & Francis, London, 1972) Google Scholar
  37. [37]
    H. Rose, Abbildungseigenschaften sphärisch korrigierter elektronenoptischer Achromate, Optik 33, 1–24 (1971) Google Scholar
  38. [38]
    G. Induni, Helvet. Phys. Acta 20, 463 (1947) Google Scholar
  39. [39]
    P. Egelhaaf, Optik 27, 387 (1968) Google Scholar
  40. [40]
    J.R. Pierce, J. Appl. Phys. 11, 548 (1940) (3.4.4.5); Von Ardenne, 1948. Tabellenzur Angewandten Physik, 1st edn (1956); Fröhlich, Nukleonik 1, 183 (1959); Von Ardenne, Exp. Techn. Phys. 9, 227 (1961) Google Scholar
  41. [41]
    Steigerwald, Optik 5, 469 (1947); Brüche, Z. Angew. Phys. 3, 88 (1951); F.W. Braucks, Optik 15, 242 (1958); F.W. Braucks, Optik 16, 304 (1959) Google Scholar
  42. [42]
    Bas-Gaydott, Z. Angew. Phys. 11, 370 (1959) Google Scholar
  43. [43]
    See, e.g. Von Ardenne, Z. Fernsehen 1, 200 (1930); Maloee-Epstein, Proc. Inst. Radiat. Eng. 22, 1386 (1934); Law, Proc. Inst. Radiat. Eng. 25, 954 (1935); Schwaetz-Strübig-Paehe, Z. Fernseh-GmbH 1, 5 (1938); Schwarz, Z. Techn. Phys. 19, 454 (1938); Dosse, Z. Phys. 115, 530 (1940); Hillier-Baker, J. Appl. Phys. 16, 469 (1945); B. Von Borries, Optik 3, 361, 389 (1948); Rogowski-Gbösser-Sommerfeld, Arch. Elektro-techn. 15, 377 (1925) Google Scholar
  44. [44]
    Bas, Optik 12, 377 (1955); Z. Angew. Phys. 7, 337 (1955) Google Scholar
  45. [45]
    Samuel, Proc. Inst. Radiat. Eng. 33, 233 (1945); Rothe-Kleen, Hochvakuum – Elektronenröhren 1, Akad. Verlagsges., Frankfurt a. M. 219 (1955); Brewer, J. Appl. Phys. 28, 7 (1958) Google Scholar
  46. [46]
    Rogowski-Grösser-Sommerfeld, Arch. Elektro-techn. 15, 377 (1925) Google Scholar
  47. [47]
    A.N. Broers, J. Appl. Phys. J38 (1991) Google Scholar
  48. [48]
    W. Blair, A.N. Broers, IBM Techn. Discl. Bull. 14(2) (1971) Google Scholar
  49. [49]
    Hibi, J. Electronmicrosc. Japan 3, 15 (1955); Sakaki-Möllenstedt, Optik 13, 195 (1956); Maruse-Sakaki, Optik 15, 485 (1958); Sakaki-Maruse, in Verh. Int. Kongr. Elektr. Mikroskopie, Berlin, 1958, vol. 9, p. 1 (Springer, Berlin, 1960); Drechsler-Cosslett-Nixon, ebenda, 13; Krause-Riecke, Phys. Verh. 12, 141 (1961) Google Scholar
  50. [50]
    L.W. Swanson, L.C. Grouser, Phys. Rev. 163, 622 (1971); A.V. Crewe, M. Isaacson, D. Johnson, Rev. Sci. Instrum. 2, 411 (1971) Google Scholar
  51. [51]
    A.V. Crewe, D.N. Eggenberger, J. Wall, L.M. Welter, J. Appl. Phys. 38, 4257 (1967); J.W. Butler, in 6th Int. Cong. Electron Micros., Rome, p. 191, 1966; A.V. Crewe, M. Isaacson, D. Johnson, Rev. Sci. Instrum. 40, 241 (1969) Google Scholar
  52. [52]
    K.J. Hanszen, K. Lauer, Zeitschr. Naturforschung 22a, 238 (1967) Google Scholar
  53. [53]
    B. von Borries, Optik 3, 321 (1948) Google Scholar
  54. [54]
    A.N. Broers, in Proc. Scanning Electron Microscopy, Part III, 661 (1975) Google Scholar
  55. [55]
    H. Schulz, Elektronenstrahlschweißen, Fachbuchreihe Schweißtechnik, Band 93 (DVS-Verlag GmbH, Düsseldorf, 1998) Google Scholar
  56. [56]
    D. von Dobeneck, T. Löwer, V. Adam, Elektronenstrahlschweißen, Die Bibliothek der Technik, Band 221 (Verlag Moderne Industrie, Landsberg/Lech, 2001) Google Scholar
  57. [57]
    K.-R. Schulze, D.E. Powers, EBW of aluminum breaks out of the vacuum, Weld. J. (Miami) 83(2), 32–38 (2004) Google Scholar
  58. [58]
    R. Zenker, Electron beam surface treatment, industrial applications and prospects, Surf. Eng. 12 (Helt 4, s.), 9–12 (1996) Google Scholar
  59. [59]
    llerG. Müller llerG. Müller G. Müller, V. Engelko, H. Bluhm, A. Heinzel, G. Schumacher, D. Strauss, A. Weisenburger, F. Zimmermann, V. Shulov, N. Notchovnaia, Application of pulsed electron beams for improvement of material surface properties, in Proceedings of the 14th International Conference on High-Power Particle Beams 2002, Albuquerque, NM, 23–28 June 2002, p. 325 Google Scholar
  60. [60]
    V.L. Granatstein, I. Alexeff, High Power Microwave Sources (Artech House, Boston, London, 1987) Google Scholar
  61. [61]
    G. Cooperstein, Status of particle beam and pulsed power research in US, in Proceedings of the 14th International Conference on High-Power Particle Beams 2002, Albuquerque, NM, 23–28 June 2002 Google Scholar
  62. [62]
    V. Engelko, B. Yatsenko, G. Müller, H. Bluhm, Pulsed electron beam facility (GESA) for surface treatment of materials, Vacuum 62, 211–216 (2001) CrossRefGoogle Scholar
  63. [63]
    M.A. Vasilievskii, I.M. Roife, V.I. Engelko, E.G. Yankin, Dynamics of plasma generated by a multitip explosive emission cathode, Sov. Phys. Tech. Phys. 31(3), 284 (1986) Google Scholar
  64. [64]
    M.A. Vasilievskii, I.M. Roife, V.I. Engelko, E.G. Yankin, The influence of emitter density and anode processes on the time of operation of a diode with multitip explosive emission cathodes, Sov. Phys. Tech. Phys. 33(9), 1060 (1988) Google Scholar
  65. [65]
    D. Strauss, G. Müller, G. Schuhmacher, V. Engelko, W. Stamm, D. Clemens, W.J. Quadakkers, Oxide scale growth on MCrAIY bond coatings after pulsed electron beam treatment, Surf. Coat. Technol. 135, 196–201 (2001) CrossRefGoogle Scholar
  66. [66]
    G. Müller, A. Heinzel, G. Schumacher, A. Weisenburger, Control of oxygen concentration in liquid lead and lead–bismuth, J. Nucl. Mater. 321, 256–262 (2003) CrossRefGoogle Scholar
  67. [67]
    G. Jäsch, Elektronenstrahlverdampfung von Aluminium mit Raten über 10g/s, Dissertation, TH Chemnitz, 1981, p. 21 ff Google Scholar
  68. [68]
    S. Schiller, U. Heisig, S. Panzer, Electron Beam Technology (Verlag Technik GmbH, Berlin, 1995), pp. 37, 38 Google Scholar
  69. [69]
    H. Ranke, V. Bauer, A. Feuerstein, W. Dietrich, Verdampferanordnung mit einem rechteckigen Verdampfertiegel und mehreren Elektronenkanonen, German patent No DE 3639683 C2 Google Scholar
  70. [70]
    K. Goedicke, B. Scheffel, S. Schiller, Plasma activated high rate evaporation using a spotless cathodic arc, Surf. Coat. Technol. 68/69, 799–803 (1994) CrossRefGoogle Scholar
  71. [71]
    hleR. Rühle hleR. Rühle R. Rühle, Verfahren zur Verdampfung im Vakuum, DRP 764927 (1939) Google Scholar
  72. [72]
    G. Mladenov, in Proceedings of the 7th International Conference on Electron Beam Technologies: Vacuum 77, vol. 4 (2005), pp. 359–546 Google Scholar
  73. [73]
    Schreiter, Sondermetalle (Verlag für Grundstoffindustrie, Leipzig, 1961); J. Kouptsidis, F. Peters, D. Proch, W. Singer, Niob für TESLA (2001) (http://tesla.desy.de/new_pages/TESLA_Reports/2001/pdf_files/tesla2001-27.pdf)
  74. [74]
    M. von Ardenne, G. Musiol, S. Reball (eds.), Effekte der Physik (VEB Deutscher Verlag der Wissenschaften, Berlin, 1989) Google Scholar
  75. [75]
    W.D. Claus (ed.), Radiation Biology and Medicine (Addison-Wesley, Reading, 1958) Google Scholar
  76. [76]
    H. Dertinger, H. Jung, Molekulare Strahlenbiologie (Springer, Berlin, Heidelberg, New York, 1969) Google Scholar
  77. [77]
    W. Glaser, Elektronenoptik (Springer, Wien, 1961) Google Scholar
  78. [78]
    M. von Ardenne, Tabellen zur Angewandte Physik, vol. 1 (VEB Verlag, 1961) Google Scholar
  79. [79]
    L. Reimer, Transmission Electron Microscopy (Springer, Berlin) Google Scholar
  80. [80]
    G.H. Jansen, Coulomb interactions in particle beams in adv., in Electronics & El. Physics, ed. by P.W. Hawkes, Suppl. 21 (Academic, Boston, 1990) Google Scholar
  81. [81]
    L.H. Jaksch, Field emission SEM for true surface imaging and analysis, Mater. World (October) (1996) Google Scholar
  82. [82]
    L. Reimer, Scanning Electron Microscopy (Springer, Berlin) Google Scholar
  83. [83]
    Grivet, Electron Optics (Elsevier, Oxford (Pergamon Print) (1965) Google Scholar
  84. [84]
    G. Willson, Organic resist materials – theory and chemistry, Chapter 3 of Introduction to Microlithography, Theory, Materials, Processing, ed. by L.F. Thompson, C.G. Willson, M.J. Bowden, American Chemical Society Symposium Series 219 (1983) Google Scholar
  85. [85]
    L.W. Swanson, L.C. Crouser, Zr-O-W cathode, J. Appl. Phys. 40(12), 4741 (1969) CrossRefGoogle Scholar
  86. [86]
    M. Hatzakis, C.H. Ting, N. Viswanathan, Fundamental aspects of electron beam exposure of polymeric resist systems, in Proc. 6th Int. Conf. On Electron and Ion Beam Sciences and Technology (1974), p. 205 Google Scholar
  87. [87]
    CAR Resists SAL 102 from Shipley, 455 Forest St., Marlboro, MA 01752, USA Google Scholar
  88. [88]
    T.H.P. Chang, Proximity effect in electron beam lithography, J. Vac. Sci. Technol. 12, 1271–1275 Google Scholar
  89. [89]
    G.E. Moore, Lithography and the future of Moore’s law, in Proc. SPIE, vol. 2437 (SPIE Press, Bellingham, 1995), pp. 2–7 Google Scholar
  90. [90]
    M. Born, E. Wolf, Principles of Optics, 6th edn (Pergamon, Oxford, 1980) Google Scholar
  91. [91]
    P. Chien, M. Chen, Proximity effects in submicron optical lithography, in Proc. SPIE, vol. 772 (SPIE Press, Bellinham, 1987), pp. 35–49 Google Scholar
  92. [92]
    ITRS Roadmap 1997. http://public.itrs.net
  93. [93]
    M. Colburn et al., Step-and-flash imprint lithography: a new approach to high resolution patterning, in Proc. SPIE, vol. 3676 (SPIE Press, Bellingham, 1999), p. 379; S-FIL™ for sub-80 nm contact hole patterning, Solid State Technol. 27(2) (2004) Google Scholar
  94. [94]
    M. Gesley, F. Aboud, D. Colby, F. Raymond, A. Watson, Electron beam column for submicron – and nanolithography, Jpn. J. Appl. Phys. 32, 5993 (1993) CrossRefGoogle Scholar
  95. [95]
    Y. Nakayama, S. Okazaki, N. Saitou, H. Wakabayashi, Electron-beam cell projection lithography: A new high-throughput electron-beam direct-writing technology using a specially tailored Si aperture, J. Vac. Sci. Technol. B 8(6) (1836) (Nov./Dec.) Google Scholar
  96. [96]
    H.C. Pfeiffer, Recent advances in electron-beam lithography for the high-volume production of VLSI devices, IEEE Trans. Electron Devices ED-26(4), 663–674 (1979); H.C. Pfeiffer, in 11th Symp. Electron and Ion Laser Beam Technology, ed. by R.M.F. Thornley (San Francisco Press, 1971), p. 337 Google Scholar
  97. [97]
    M. McCord, M. Rooks, Chapter 2.6.5.1 GDS-II, in Handbook of Microlithography, Micromachining and Microfabrication, vol. 1: Microlithography, ed. by P. Rai-Choudhury (SPIE Press, Bellingham, 1997) 198 ff Google Scholar
  98. [98]
    M. Hintermaier, U. Hoffman, B. Hübner, C.K. Kalus, E. Knapek, H.W.P. Koops, R. Schlager, E. Seebald, M. Weber, Proximity correction using CAPROX, evaluation and application, J. Vac. Sci. Technol. B 9, 3043–3047 (1991) CrossRefGoogle Scholar
  99. [99]
    T.H.P. Chang, D. Kern, L. Murray, Arrayed miniature electron beam columns for high throughput sub 100-nm lithography, J. Vac. Sci. Technol. B 10, 2743 (1992) CrossRefGoogle Scholar
  100. [100]
    T. Groves, in Proc. 20th European Mask Conference, GMM Fachbericht 43, Dresden, 2004, p. 209 Google Scholar
  101. [101]
    J. Hren, Barriers to AEM: contamination and etching, in Principles of Analytical Electron Microscopy, ed. by D. Joy, A. Romig, J. Goldstein (Plenum, New York, 1986), p. 353 Google Scholar
  102. [102]
    R. Schief, Optic 29, 416 (1969) Google Scholar
  103. [103]
    A. Broers, W. Molzen, Electron-beam formation of 80 Å metal structures, Appl. Phys. Lett. 29, 596 (1976) CrossRefGoogle Scholar
  104. [104]
    H.W.P. Koops, J. Kretz, M. Rudolp, M. Weber, G. Dahm, K.L. Lee, Characterization and application of materials grown by electron beam induced deposition, Jpn. J. Appl. Phys. 33, 7099–7107 (1994) CrossRefGoogle Scholar
  105. [105]
    S. Matsui, T. Ichihashi, Electron beam induced selective etching and deposition technology, J. Vac. Sci. Technol. B 7, 1182 (1989) CrossRefGoogle Scholar
  106. [106]
    H.W.P. Koops, Charged particle beam processes and its applicability to mask repair for next generation lithographies, in Proceedings of the 17th European Mask Conference, GMM-Fachbericht 32 (VDE Verlag, Berlin, 2000), pp. 191–194 Google Scholar
  107. [107]
    H.W.P. Koops, R. Weiel, D.P. Kern, T.H. Baum, J. Vac. Sci. Technol. B 6, 477–481 (1988) CrossRefGoogle Scholar
  108. [108]
    D. Winkler, H. Zimmermann, M. Mangerich, R. Trauner, E-beam probe station with integrated tool for electron beam induced etching, Microelectron. Eng. 31, 141–147 (1996) CrossRefGoogle Scholar
  109. [109]
    Sun Chemical Corp, Preparation of photosetting coating composition, U.S. Patents 2,453,769 and 2,453,770, 1946 Google Scholar
  110. [110]
    A. Charlesby, V. Wycherley, The irradiation of unsaturated polyester resins, Int. J. Appl. Radiat. Isot. 2, 26–34 (1957) CrossRefGoogle Scholar
  111. [111]
    P.G. Garratt, Strahlenhärtung (Curt R. Vincentz Verlag, Hannover, 1996) Google Scholar
  112. [112]
    Chemistry & Technology of UV & EB Formulations for Coatings, Inks & Paints (Wiley/SITA Series in Surface Coatings Technology) vol. I, vol. 3 (Wiley, New York, 1998) Google Scholar
  113. [113]
    B.J. Twomey, Radiation cured coatings – some commercial successes, Phys. Chem. 14, 69 (1979) Google Scholar
  114. [114]
    P. Holl, Two ideal applications for the low energy electron-beam accelerator: Vulcanisation of pressure-sensitive adhesives and controlled through-curing of coatings on parquet, Radiat. Phys. Chem. 46, 953 (1995) CrossRefGoogle Scholar
  115. [115]
    G. Mattausch, M. Henry, J. Daenhard, A. Reichmann, O. Roeder, R. Bartel, Survey of Electron Beam Technologies at Fraunhofer FEP. Annual Report of the Fraunhofer Institute for Electron Beam and Plasma Technology, Dresden, 2001 Google Scholar
  116. [116]
    A. Charlesby, Atomic Radiation and Polymers (Pergamon, Oxford, 1960) Google Scholar
  117. [117]
    A. Chapiro, Radiation Chemistry of Polymeric Systems (Wiley, New York, 1962) Google Scholar
  118. [118]
    W. Schwarz, U. Gohs, Reactive modification of native oils by means of electrons, in Annual Report of the Fraunhofer Institute for Electron Beam and Plasma Technology, Dresden, 2003, pp. 20–27 Google Scholar
  119. [119]
    J.G. Drobny, Radiation Technology for Polymers (CRC, Boca Raton, London, New York, Washington, DC, 2003) Google Scholar
  120. [120]
    E.S. Josephson, A historical review of food irradiation, J. Food Saf. 5, 161 (1983) CrossRefGoogle Scholar
  121. [121]
    B.P. Fairand, Radiation Sterilization for Health Care Products: X-Ray, Gamma, and Electron Beam (CRC, Boca Raton, 2002) Google Scholar
  122. [122]
    FOA/IAEA/WHO expert committee, Wholesomeness of irradiated food. Technical Report Series 659, WHO, Geneva (1981); S. Hackwood, The irradiation processing of foods, in Food Irradiation, ed. by S. Thorne (Elsevier Science, Essex, 1991) Google Scholar
  123. [123]
    T. Schröder, O. Röder, K. Lindner, e•dressing – a unique technology for seed, ISTA News Bull. 118, 13 (1998) Google Scholar
  124. [124]
    M. Cutrubinis, H. Delicee, M. Stahl, O. Röder, H.J. Schaller, Detection methods for cereal grains treated with low and high energy electrons, Radiat. Phys. Chem. 72, 639–664 (2005) CrossRefGoogle Scholar
  125. [125]
    S. Machi, Radiation technology for environmental conservation, Radiat. Phys. Chem. 22(1–2), 91–97 (1983) Google Scholar
  126. [126]
    H. Mätzing, H.R. Paur, Chemical mechanisms and process parameters of flue gas cleaning by electron beam, in Gaseous Pollutants: Characterization and Cycling, ed. by J.O. Nriagu (Wiley, New York, 1992), pp. 307–331 Google Scholar
  127. [127]
    O. Tokunaga, N. Suzuki, Radiation chemical reactions in NOx and SO2 removals from flue gas, Radiat. Phys. Chem. 24(1), 145–165 (1984) CrossRefGoogle Scholar
  128. [128]
    R.J. Woods, A.K. Pikaev, Applied Radiation Chemistry: Radiation Processing (Wiley, New York, 1994) Google Scholar
  129. [129]
    B. Han, J. Ko, J. Kim, Y. Kim, W. Chung, I.E. Makarov, A.V. Ponomarev, A.K. Pikaev, Combined electron-beam and biological treatment of dyeing complex wastewater. Pilot plant experiments, Radiat. Phys. Chem. 64, 53–59 (2002) CrossRefGoogle Scholar
  130. [130]
    G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O-) in aqueous solutions, J. Phys. Chem. Ref. Data 17, 513–886 (1988) Google Scholar
  131. [131]
    H. Rehme, Siemens Analysentechnische Mitteilungen 123, Sonderdruck aus Techniken der Zukunft, Heft 9 (1974), pp. 69–74; H. Rehme, Analysentechnische Mitteilungen (62) (1973) Google Scholar
  132. [132]
    B. von Borries, E. Ruska, Die Technik des Siemens – Übermikroskops, Siemens Zeitschrift 20(6), 217 (1940) Google Scholar
  133. [133]
    O. Scherzer, Über einige Fehler von Elektronenlinsen, Z. Phys. 101, 593–603 (1936); H. Rose, Abbildungseigenschaften sphärisch korrigierter elektronenoptischer Achromate, Optik 33, 1–24 (1971) Google Scholar
  134. [134]
    H. Koops, in Proc. 9 Int. Congr. Electron Microscopy, Toronto Bd. 3, 1978, p. 185 Google Scholar
  135. [135]
    H. Rose, Prospects for aberration-free electron microscopy, Ultramicrosc. 103(1), 1–6 (2005) CrossRefGoogle Scholar
  136. [136]
    Berechnungsgrundlagen für die Vakuumtechnik, Leybold-Heraeus, HV 150 Google Scholar
  137. [137]
    ESPE-Knoll: Hochspannungstechnologie; G. Oberdorfer, Lehrbuch der Elektrotechnik, Bd. 1 (Leibnitz-Verlag, München, 1948) Google Scholar
  138. [138]
    J. Heinzerling, J. Phys. E 9, 131 (1976); G. Fey, Optik 55, 55 (1980) Google Scholar
  139. [139]
    J. Picht, I. Heydenreich, Einführung in die Elektronenmikroskopie (VEB-Verlag Technik, Berlin, 1966) Google Scholar
  140. [140]
    L. Reimer, G. Pfefferkorn, Rasterelektronenmikroskopie (Springer, Berlin, 1977); R. Barer, V.E. Cosslett, Advances in Optical and Electron Microscopy, Bd. 6 (1975) S.275; M. von Ardenne, Tabellen zur Angewandten Physik, Bd I (VEB-Verlag der Wiss., Berlin, 1962) Google Scholar
  141. [141]
    F. Lenz, Habilitationsschrift, TH, Aachen, 1957 Google Scholar
  142. [142]
    L. Reimer, Elektronenmikroskopische Untersuchungs- und Präparations-methoden (Springer, Berlin, 1967) Google Scholar
  143. [143]
    M. Isaacson, D. Johnson, Low Z elemental analysis using energy loss electrons, in Proc. 8 SEM Symp. IITRI, Chicago, Bd. I, 1975, p. 157 Google Scholar
  144. [144]
    A.V. Crewe, J. Wall, L.M. Welter, J. Appl. Phys. 39, 5861 (1968) CrossRefGoogle Scholar
  145. [145]
    P.W. Hawkes, Image Processing and Computer aided Design in Electron Optics (Academic, London, 1973) Google Scholar
  146. [146]
    P.W. Hawkes, Electron Optics and Electron Microscopy (Taylor & Francis, London, 1972) Google Scholar
  147. [147]
    enK.H. Hanßen enK.H. Hanßen K.H. Hanßen, Z. Angew. Phys. 20, 427 (1966); F. Thon, Z. Naturforsch. 20a, 154 (1965) Google Scholar
  148. [148]
    F. Thon, Z. Naturforsch. 21a, 474 (1966); F. Thon, B.M. Siegel, Berichte der Bunsen Gesellschaft für Physikalische Chemie, Bd. 74, 1116 (1970); K.-J. Hanszen, Optik 32, 74 (1970) Google Scholar
  149. [149]
    Titan 80–300 TEM, see http://www.feicompany.com/
  150. [150]
    K. Honda, S. Takashima, JEOL News 38, 36; S. Uno, K. Honda, N. Nakamura, M. Matsuya, J. Zach, Optik 116, 438 (2005) Google Scholar
  151. [151]
    P.J. Goodhew, F.J. Humphreys, Electron Microscopy and Analysis (McGraw-Hill, London, 1991) Google Scholar
  152. [152]
    H. Rehme, E. Wolfgang, Siemens Zeitschrift 49, 732 (1975) Google Scholar
  153. [153]
    H.-J. Hunger (ed.), Werkstoffanalytische Verfahren (Deutscher Verlag für Grundstoffindustrie, Leipzig, 1995) Google Scholar
  154. [154]
    C.G. Smith, Surface Analysis by Electron Spectroscopy (Plenum, New York, 1994) Google Scholar
  155. [155]
    EDAX International Inc., Prairie View, Illinois 60069, USA Google Scholar
  156. [156]
    Microspec Corporation, Sunnyvale CA94086, USA Google Scholar
  157. [157]
    J. Walinga, X-ray elemental analysis in the electron microscope, Philips Bull. EM 108(1, 2) (1977) Google Scholar
  158. [158]
    W.B. Ashwell, C.J. Todd, R. Heckingbottom, Combined Auger electron spectroscopy and scanning electron microscopy, J. Phys. E: Sci. Instrum. 6, 435–438 (1973); A. Christou, Auger-spectroscopy of solid surfaces in a dry pumped high resolution SEM, Scanning Electron Microscopy 1975, S. 149–156 IIT, Research Institute, Chic. 75 Google Scholar
  159. [159]
    S. Aksela, M. Karras, M. Pessa, E. Suominen, Study of the electron optical properties of an electron spectrograph with coaxial cylindrical electrodes, Rev. Sci. Instrum. 41, 351–355 (1970) CrossRefGoogle Scholar
  160. [160]
    P. van Zuylen, Some applications of an energy analyser in electron microscopy, Philips Bull. EM 108(1), 14 (1977) Google Scholar
  161. [161]
    A.J.F. Metherell, Advances in Optical and Electron Microscopy. Microscopy, vol. 4 (Academic, London, 1971) Google Scholar
  162. [162]
    R.P. Ferrier, R.P.T. Hills, Advances in Analysis of Microstructural Features by Electron-Beam Techniques (The Metals Society, London, 1974) Google Scholar
  163. [163]
    M. Isaacson, D. Johnson, Ultramicroscopy 1, 33 (1975); C. Colliex, V.E. Cosslett, R.D. Leapman, P. Trebbia, Contribution of electron energy loss analysis spectroscopy to development of analytical electron microscopy, Ultramicroscopy 1, 301–315 (1976) Google Scholar
  164. [164]
    H.T. Pearce-Percy, J.M. Cowley, Optik 44, 273 (1976) Google Scholar
  165. [165]
    rlE.M. Hörl rlE.M. Hörl E.M. Hörl, gschlE. Mügschl gschlE. Mügschl E. Mügschl, Scanning electron microscopy of metals using light emission, in Proc. Vth European Congr. Electron Microscopy, 1972, pp. 502, 503 Google Scholar
  166. [166]
    H.C. Pfeiffer, G.O. Langner, W. Stickel, R.A. Simpson, J. Vac. Sci. Technol. 19, 1016 (1981) Google Scholar
  167. [167]
    H. Rehme, E. Wolfgang, SIEMENS Analysentechnische Mitteilungen (166) Google Scholar
  168. [168]
    B. Wicht, Current Sense Amplifiers for Embedded SRAM in High-Performance System-on-a-Chip Designs (Springer, Berlin, 2003), p. 123 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • H. Bluhm
  • B. Han
  • A. G. Chmielewski
  • D. von Dobeneck
  • U. Gohs
  • J. Gstöttner
  • G. Mattausch
  • H. Morgner
  • H. W. P. Koops
  • A. Reichmann
  • O. Röder
  • S. W. Schulz
  • B. Wenzel
  • O. Zywitzki

There are no affiliations available

Personalised recommendations