Advertisement

Vacuum Electron Sources and their Materials and Technologies

  • G. Gaertner
  • H. W. P. Koops

Keywords

Work Function Electron Emission Thermionic Emission Emission Current Density Oxide Cathode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F.R. Paturi, Chronik der Technik (Chronik-Verlag in der Harenberg Kommunikation, Dortmund, 1989) Google Scholar
  2. [2]
    G. Herrmann, S. Wagener, The Oxide Coated Cathode (Chapman & Hall, London, 1951) Google Scholar
  3. [3]
    G. Haas, R. Thomas, Thermionic sources for high brightness electron beams, IEEE Trans. Electron Devices 37(3), 850–861 (1990) CrossRefGoogle Scholar
  4. [4]
    A. Wehnelt, Über den Austritt negativer Ionen aus glühenden Metallen, Annal. Phys. Ser. 4 14, 425–468 (1904) CrossRefGoogle Scholar
  5. [5]
    L.S. Nergaard, Electron and ion motion in oxide cathodes, in Halbleiter-probleme, Bd. 3 (F. Vieweg-Verlag, Braunschweig, 1956), pp. 154–206 Google Scholar
  6. [6]
    A.L. Reimann, Thermionic Emission (Chapman & Hall, London, 1934) Google Scholar
  7. [7]
    G. Gaertner, P. Geittner, H. Lydtin, A. Ritz, Emission properties of top-layer Scandate cathodes prepared by LAD, Appl. Surf. Sci. 111, 11–17 (1997) CrossRefGoogle Scholar
  8. [8]
    G. Miram, A. Cattelino, Life test facility for thermionic cathodes, in TRI Service/NASA Cathode Workshop, Cleveland, Conf. Record, 1994, pp. 233–236 Google Scholar
  9. [9]
    J. Eichmeier, Moderne Vakuumelektronik (Springer, Berlin, 1981) Google Scholar
  10. [10]
    W. Nottingham, Thermionic emission, in Handbuch der Physik, ed. by S. Flügge. Elektronen-Emission/Gasentladungen I, vol. 21 (Springer, Berlin, 1956), pp. 1–175 Google Scholar
  11. [11]
    G. Haas, R. Thomas, Thermionic emission and work function, in Techniques of Metal Research, Vol. 6/1, ed. by E. Passaglia. (Interscience Publ., 1972), pp. 94–262 Google Scholar
  12. [12]
    A.G. Knapp, Surface potentials and their measurement by the diode method, Surf. Sci. 34, 289–316 (1973) CrossRefGoogle Scholar
  13. [13]
    J. Hasker, Calculation of diode characteristics and proposed characterization of cathode emission capability, Appl. Surf. Sci 16, 220–237 (1983) CrossRefGoogle Scholar
  14. [14]
    C. Herring, M. Nichols, Thermionic emission, Rev. Mod. Phys. 21(2), 196 (1949) CrossRefGoogle Scholar
  15. [15]
    J. Eichmeier, H. Heynisch (ed.), Handbuch der Vakuumelektronik (R. Oldenbourg, München, Wien, 1989) Google Scholar
  16. [16]
    R.O. Jenkins, A review of thermionic cathodes, Vacuum 19(8), 353 (1969) CrossRefGoogle Scholar
  17. [17]
    I. Langmuir, The electron emission from thoriated tungsten filaments, Phys. Rev. 22, 357–398 (1923) CrossRefGoogle Scholar
  18. [18]
    I. Weissman, J. Appl. Phys. 36(2), 406 (1965) CrossRefGoogle Scholar
  19. [19]
    G. Gaertner, D. van Houwelingen, Electron emission cooling of thermionic thoriated tungsten cathodes under high dc-loads, Elektronenröhren u. Vakuumelektronik, NTG-Fachbericht 95, VDE-Verlag (1986), pp. 224–229 Google Scholar
  20. [20]
    G. Gaertner, NTG Fachberichte 85, 228–232 (1983) Google Scholar
  21. [21]
    G. Gaertner, P. Janiel, H. Lydtin, ITG Fachbericht 108, 297–302 (1989) Google Scholar
  22. [22]
    G. Gessinger, C. Buxbaum, High Temp.-High Press. 10, 325–328 (1978) Google Scholar
  23. [23]
    G. Gaertner, P. van der Heide, New Developments in CRT Cathodes, IDW 2000, Technical Digest CRT4-1, pp. 513–517 Google Scholar
  24. [24]
    G. Gaertner, D. Barratt, Appl. Surf. Sci. 251, 73–79 (2005) CrossRefGoogle Scholar
  25. [25]
    B. Vancil, E. Wintucky, Appl. Surf. Sci. 251, 101–105 (2005) CrossRefGoogle Scholar
  26. [26]
    Y. Wang, et al., Appl. Surf. Sci. 251, 80–88 (2005) CrossRefGoogle Scholar
  27. [27]
    R. Cortenraad, A. van der Gon, H. Brongersma, G. Gaertner, A. Manenschijn, Appl. Surf. Sci. 146, 69–74 (1999) CrossRefGoogle Scholar
  28. [28]
    S. Kimura, T. Higuchi, et al., Appl. Surf. Sci. 111, 60–63 (1997) CrossRefGoogle Scholar
  29. [29]
    A. van Oostrom, L. Augustus, Appl. Surf. Sci. 2(2), 173–186 (1979) CrossRefGoogle Scholar
  30. [30]
    S. Taguchi, T. Aida, S. Yamamoto, IEEE Trans. Electron. Devices 31(7), 900–903 (1984) CrossRefGoogle Scholar
  31. [31]
    J. Hasker, J. van Esdonk, J.E. Crombeen, Appl. Surf. Sci. 26, 173–195 (1986) CrossRefGoogle Scholar
  32. [32]
    J. Hasker, J.E. Crombeen, Trans. Electron. Devices 37(12), 2589–2594 (1990) CrossRefGoogle Scholar
  33. [33]
    S. Yamamoto, I. Watanabe, S. Taguchi, S. Sasaki, T. Yaguchi, Jap. J. Appl. Phys. 28, 490–494 (1989) CrossRefGoogle Scholar
  34. [34]
    U. van Slooten, P. Duine, Appl. Surf. Sci. 111, 24–29 (1997) CrossRefGoogle Scholar
  35. [35]
    G. Gaertner, P. Janiel, J.E. Crombeen, J. Hasker, Vacuum microelectronics 1989, in IOP Conf. Ser. 99, 25–28 (1989) Google Scholar
  36. [36]
    G. Gaertner, P. Geittner, D. Raasch, A. Ritz, D. Wiechert, Appl. Surf. Sci. 146, 12–16, 22–30 (1999) CrossRefGoogle Scholar
  37. [37]
    G. Gaertner, P. Geittner, D. Raasch, Low temperature and cold emission of Scandate cathodes, Appl. Surf. Sci. 201, 61–68 (2002) CrossRefGoogle Scholar
  38. [38]
    M. Saito, et al., Higher current density oxide cathode for CRT, NTG Fachberichte 95, 165–170 (1986) Google Scholar
  39. [39]
    G. Gaertner, D. Raasch, D. Barratt, S. Jenkins, Accelerated life tests of CRT oxide cathodes, Appl. Surf. Sci. 215, 72–77 (2003) CrossRefGoogle Scholar
  40. [40]
    G. Gaertner, P. Janiel, D. Raasch, Direct determination of electrical conductivity of oxide cathodes, Appl. Surf. Sci. 201, 35–40 (2002) CrossRefGoogle Scholar
  41. [41]
    S. Hodgson, C. Goodhand, P. van der Heide, et al., Processing and performance of a novel cathode material, Appl. Surf. Sci. 146, 79–83 (1999) CrossRefGoogle Scholar
  42. [42]
    T. Higuchi, Recent trends in thermionic cathodes, in IDW’98, CRT3-1, p. 393 Google Scholar
  43. [43]
    Y.C. Kim, K. Joo, J. Choi, H. Yang, in IVESC 2000 Techn. Digest D-4 Google Scholar
  44. [44]
  45. [45]
    J.M. Lafferty, Boride cathodes, J. Appl. Phys. 22(3), 299–309 (1951) CrossRefGoogle Scholar
  46. [46]
    H. Ahmed, A. Broers, J. Appl. Phys. 43, 2185–2192 (1972) CrossRefGoogle Scholar
  47. [47]
    S. Dushman, Thermionic emission, Rev. Mod. Phys. 2, 405–414 (1930) CrossRefGoogle Scholar
  48. [48]
    V. Fomenko, Emission properties of materials, NTIS, JPRS-56579 (1972) Google Scholar
  49. [49]
    A. Makarov, et al., Cesium coated graphite emitter, Sov. Phys.-Tech. Phys. 22(12), 1463–1465 (1978) Google Scholar
  50. [50]
    P.A. Duine, in IVMC, Darmstadt, 1999, pp. 368–369 Google Scholar
  51. [51]
    P. Coates, Thermionic emission from photocathodes, J. Phys. D: Appl. Phys. 5, 1489–1498 (1972) CrossRefGoogle Scholar
  52. [52]
    R.H. Good Jr., E.W. Müller, Flügge, Elektronen-Emission, in Handbuch der Physik, Bd. XXI (Springer, Berlin, 1956), S. 176–231 Google Scholar
  53. [53]
    R.H. Fowler, L. Nordheim, Proc. R. Soc. London Ser. A 119, 173 (1928) CrossRefGoogle Scholar
  54. [54]
    E.W. Müller, Ergeb. Exakt. Naturwiss 27, 290 (1953) CrossRefGoogle Scholar
  55. [55]
    K.R. Shoulders, Microelectronics using electron-beam-activated machining techniques, Adv. Comp. 2, 135 (1961) Google Scholar
  56. [56]
    J.W. Gewartowski, H.A. Watson, Principles of Electron Tubes (D. Van Norstrand, Princeton, 1965), p. 229 Google Scholar
  57. [57]
    W.P. Dyke, W.W. Dolan, Advances in Electronics and Electron Physics, vol. 8 (Academic, New York, 1956), p. 89 Google Scholar
  58. [58]
    C.J. Spindt, Appl. Phys. 39, 3504 (1968) CrossRefGoogle Scholar
  59. [59]
    C. Spindt, I. Brodie, L. Humphrey, E.R. Westerberg, J. Appl. Phys. 47, 5248 (1976) CrossRefGoogle Scholar
  60. [60]
    R. Meyer, A. Ghis, P. Ramband, F. Muller, Development of matrix array of cathode emitters on a glass substrate for flat display applications, in Proc. 1st IVMC, Williamsburg, VA, 1988, p. 10 Google Scholar
  61. [61]
    I. Brodie, C.A. Spindt, Appl. Surf. Sci. 2, 149 (1979) CrossRefGoogle Scholar
  62. [62]
    I. Brodie, C.A. Spindt, Vacuum microelectronics, in Advances in Electronics and Electron Physics, ed. by P.W. Hawkes, vol. 83 (Academic, New York, 1992), p. 1 Google Scholar
  63. [63]
    D.W. Tuggle, L.W. Swanson, Emission Characteristics of the Zr-O-W thermal field electron source, J. Vac. Sci. Technol. B 3, 220 (1985) CrossRefGoogle Scholar
  64. [64]
    L.W. Swanson, A comparative study of the zirconiated and build-up W cathode, J. Vac. Sci. Technol. 12(6), 1228 (1975) CrossRefGoogle Scholar
  65. [65]
    H.G. König, H. Koops, A Study of Zr-O-W- and W-field emitters in an electron source at high vacuum conditions, in Proc. Int. Conf. Microcircuit Engineering, Berlin, 1984, ed. by A. Heuberger, H. Beneking (Academic, New York, 1985), pp. 195–202 Google Scholar
  66. [66]
    T. Asano, T. Tamon, Tech. Dig. IVMC91, 1991, p. 88 Google Scholar
  67. [67]
    M. Komuro, H. Hiroshima, J. Vac. Sci. Technol. B 9, 2656 (1991) CrossRefGoogle Scholar
  68. [68]
    P.R. Schwoebel, C.A. Spindt, Appl. Phys. Lett. 63, 33 (1993) CrossRefGoogle Scholar
  69. [69]
    P.R. Wilshaw, E.C. Boswell, J. Vac. Sci. Technol. B 12, 662 (1994); M. Takai, M. Yamashita, H. Wille, S. Yura, S. Horibata, M. Ototake, Appl. Phys. Lett. 66, 422 (1995) CrossRefGoogle Scholar
  70. [70]
    M. Takai, M. Yamashita, H. Wille, S. Yura, S. Horibata, M. Ototake, J. Vac. Sci. Technol. B 13, 441 (1995) CrossRefGoogle Scholar
  71. [71]
    S. Matsui, K. Mori, J. Vac. Sci. Technol. B 4, 299 (1986) CrossRefGoogle Scholar
  72. [72]
    H.W.P. Koops, J. Kretz, M. Rudolph, M. Weber, G. Dahm, K.L. Lee, Jpn. J. Appl. Phys. 33, 1345 (1994) CrossRefGoogle Scholar
  73. [73]
    J. Kretz, M. Rudolph, M. Weber, H.W.P. Koops, Three dimensional structurization by additive lithography, analysis of deposits using TEM and EDX, and application for field emitter tips, Microelectron. Eng. 23, 477–481 (1994) CrossRefGoogle Scholar
  74. [74]
    M. Takai, T. Kishimoto, M. Yamashita, H. Morimoto, S. Yura, A. Hosono, S. Okuda, S. Lipp, L. Frey, H. Ryssel, J. Vac. Sci. Technol. 14, 1973 (1996) Google Scholar
  75. [75]
    T. Hirano, S. Kanemaru, H. Tanoue, J. Itoh, Jap. J. Appl. Phys. 35, 6637 (1996) CrossRefGoogle Scholar
  76. [76]
    K. Okano, et al., Appl. Surf. Sci. 146, 274–279 (1999) CrossRefGoogle Scholar
  77. [77]
    J.F. Xu, et al., Appl. Surf. Sci. 146, 280–286 (1999) CrossRefGoogle Scholar
  78. [78]
    W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, J.M. Kim, Appl. Phys. Lett. 75, 3129 (1999) CrossRefGoogle Scholar
  79. [79]
    S.K. Kang, J.H. Choi, J.H. Park, J.-H. Han, J.-B. Yoo, J.-W. Nam, C.K. Lee, J.M. Kim, Relationship between field emission property and composition of carbon nanotube paste for large area cold cathode, J. Vac. Sci. Technol. B 22(3), 1345 (2004) CrossRefGoogle Scholar
  80. [80]
    K.A. Dean, B.F. Coll, Y.W. Xie, A.A. Talin, A. Howard, C.D. Moyer, J. Trujillo, J. Jaskie, Motorola Inc. Physical Science Labs, Tempe, AZ Google Scholar
  81. [81]
    A.G. Chakhovskoi, C.E. Hunt, G. Forsberg, T. Nilsson, P. Persson, Reticulated vitreous carbon field emission cathodes for light source applications, J. Vac. Sci. Technol. B 21, 571 (2003) CrossRefGoogle Scholar
  82. [82]
    H. Busta, Field emission flat panel displays, Chapter 7, in Vacuum Microelectronics, ed. by W. Zhu (Wiley, New York, 2001) Google Scholar
  83. [83]
    E.A. Hijzen, The avalanche cold cathode for CRTs, in IDW’98, 1998, pp. 405–408 Google Scholar
  84. [84]
    A.M.E. Hoebrechts, G.G.P. van Gorkum, Design, technology, and behavior of a silicon avalanche cathode, J. Vac. Sci. Technol. B 4, 105 (1986) CrossRefGoogle Scholar
  85. [85]
    S.H. Jo, J.D. Lee, Fabrication and analysis of a silicon tip avalanche cathode, J. Vac. Sci. Technol. B 13(2), 469 (1995) CrossRefMathSciNetGoogle Scholar
  86. [86]
    W. Fuhs, P. Kanschat, K. Lips, Bandtails and defects in microcrystalline silicon (mu c-Si:H), J. Vac. Sci. Technol. B 18, 1792 (2000) CrossRefGoogle Scholar
  87. [87]
    J.-S. Kim, T. Hoshi, K. Sawada, M. Ishida, Planar metal–insulator–semiconductor type field emitter fabricated on an epitaxial Al/Al2O3/Si (111) structure, J. Vac. Sci. Technol. B 22, 1358–1361 (2004) CrossRefGoogle Scholar
  88. [88]
    H.A. Baba, T. Yoshida, T. Asano, Field emission characteristics of defect-controlled polyimide tunnelling cathode, J. Vac. Sci. Technol. B 22, 1353–1357 (2004) CrossRefGoogle Scholar
  89. [89]
    Riege, Ferroelectric electron emission: Principles and technology, Appl. Surf. Sci. 111, 318–324 (1997) CrossRefGoogle Scholar
  90. [90]
    J.D. Clewley, A.D. Crowell, D.W. Juenker, Changes in photoelectron emission from molybdenum due to exposure to gases, J. Vac. Sci. Technol. 9, 877 (1972) CrossRefGoogle Scholar
  91. [91]
    T.E. Fischer, Photoemission and surfaces, J. Vac. Sci. Technol. 9, 860 (1972) CrossRefGoogle Scholar
  92. [92]
  93. [93]
    D. Martin, et al., Design of glass substrates and spacers for FEDs, Saint-Gobain Display Glass, France, Technical digest EURO FE, 2002 Google Scholar
  94. [94]
  95. [95]
    J. Dziuban, R. Walczak, Microwave enhanced wet anisotropic etching of silicon utilizing a memory effect of KOH activation – a remote E2MSi process, in The 16th European Conference on Solid-State Transducers Eurosensors XVI, Prague, Czech Republic, T1A3, September 15–18, 2002 Google Scholar
  96. [96]
    J. Eichmeier, Moderne Vakuumelektronik (Springer, Berlin, 1981), chapter 9.4 Google Scholar
  97. [97]
    J. Eichmeier, H. Heynisch (ed.), Handbuch der Vakuum-elektronik (R. Oldenbourg, München, Wien, 1989), chapter 2 Google Scholar
  98. [98]
    W. Kohl, Handbook of Materials and Techniques for Vacuum Devices (Reinhold Publishing corporation, 1967) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • G. Gaertner
  • H. W. P. Koops

There are no affiliations available

Personalised recommendations