Skip to main content

Microwave Tubes

  • Chapter
Vacuum Electronics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.H. Abrams, B. Levush, et al., Vacuum electronics in the 21st centuries, IEEE Microwave Mag. 2, 61 (Sept.) (2001)

    Article  Google Scholar 

  2. M. Sedlacek, Electron Physics of Vacuum Gaseous Devices (Wiley, Hoboken, 1996)

    Google Scholar 

  3. A.S. Gilmour, Microwave Tubes (Artech House, London, 1986)

    Google Scholar 

  4. J.F. Gittins, Power Travelling Wave Tube (The English Universities Press, Ltd., 1964)

    Google Scholar 

  5. A. Septier, Focusing of Charged Particles, vol. 1 & 2 (Academic, 1967)

    Google Scholar 

  6. P.T. Kirstein, G.S. Kino, Waters WE: Space Charge Flow (McGraw-Hill, New York, 1967)

    Google Scholar 

  7. S. Ramo, J.R. Whinnery, T. Van Duzer, Fields and Waves in Communications Electronics (Wiley, New York, 1984)

    Google Scholar 

  8. R. Warnecke, P. Guenard, Les Tubes Électroniques à Commande par Modulation de Vitesse (Gauthier-Villars, 1951)

    Google Scholar 

  9. J.W. Gewartowski, H.A. Watson, Principles of Electron Tubes (Van Nostrand, Princeton, 1965)

    Google Scholar 

  10. A.H.W. Beck, Space Charge Waves & Slow Electromagnetic Waves (Pergamon Press, 1958)

    Google Scholar 

  11. A. Leblond, Les Tubes Hyperfréquences (Masson, 1972)

    Google Scholar 

  12. N.E. Lindenblad, U.S. Patent 2,300,052, filed May 4, 1940, issued October 27, 1942

    Google Scholar 

  13. R. Kompfner, The traveling wave valve, Wirel. World 53, 369 (Nov.) (1946)

    Google Scholar 

  14. H.-T. Schmidt, Homepage. www.hts-homepage.de/WesternElectric/WesternElectric700.html

  15. http://accelconf.web.cem.ch/accelconf/p95/ARTICLES/RPA17.PDF

  16. J.R. Pierce, Traveling Wave Tubes (D. Van Nostrand, Princeton, 1950)

    Google Scholar 

  17. H.J. Wolkstein, Effect of collector potential depression on the efficiency of traveling wave tubes, RCA Rev. 19, 259 (June) (1958)

    Google Scholar 

  18. W. Neugebauer, T.G. Mihran, A ten stage electrostatic depressed collector for improving klystron efficiency, IEEE Trans. Electron Devices ED-19(1) (Jan.) (1972)

    Google Scholar 

  19. A.S. Gilmour Jr., Principles of Traveling Wave Tubes (Artech House, London, 1994 & 1999)

    Google Scholar 

  20. J.R. Pierce, Theory and Design of Electron Guns (D. Van Nostrand, Princeton, 1954)

    Google Scholar 

  21. I.L. Langmuir, K. Blodgett, Currents limited by space charge between concentric spheres, Phys. Rev. 24, 53 (July) (1924)

    Article  Google Scholar 

  22. C.C. Cutler, The nature of power saturation in traveling wave tubes, Bell Sys. Tech. J. 35, 841 (1956)

    Google Scholar 

  23. J.E. Rowe, Nonlinear Electron Wave Interaction Phenomena (Academic, New York, 1965)

    Google Scholar 

  24. G. Kornfeld, E. Bosch, From History to Future of Satellite TWT Amplifiers, Frequenz Zeitschrift für Telekommunikation, Band 55, 9-10/2001

    Google Scholar 

  25. D.C. Rogers, Proc. IEE 100(Pt. III), 151 (May) (1953)

    Google Scholar 

  26. Tore Wessel-Berg, A General Theory of Klystrons with Arbitrary, Extended Interaction Fields, M.L. Report No. 376 (1957)

    Google Scholar 

  27. M. Chodorow, B. Kulke, IEEE Trans. Electron Devices ED-13, 439 (1966)

    Article  Google Scholar 

  28. Y.M. Shin, G.S. Park, G.P. Scheitrum, G. Caryotakis, Circuit analysis of an extended interaction klystron, J. Korean Phys. Soc. 44(5), 1239 (May) (2004)

    Google Scholar 

  29. B. Steer, State of the art W-band EIK for Cloudsat, in International Vacuum Electronics Conference, IVEC 2004, Monterey, 2004

    Google Scholar 

  30. B. Steer, Wide bandwidth, high average power eiks drive new radar concepts, in International Vacuum Electronics Conference, IVEC 2000, Monterey, 2000

    Google Scholar 

  31. S. Millmann, A spatial harmonics amplifier for 6 mm wavelength, Proc. IRE 39, 1035 (Sept.) (1951)

    Article  Google Scholar 

  32. R. Kompfner, The backward wave tube, U.S. Patent 2,985,790, filed 17 May 1952

    Google Scholar 

  33. R. Kompfner, N.T. Williams, Backward-wave amplifier, U.S. Patent 2,916,657, filed 17 May 1952

    Google Scholar 

  34. R. Kompfner, N.T. Williams, Backward-wave tubes, Proc. IRE 41, 1602 (November) (1953)

    Article  Google Scholar 

  35. H. Heffner, Analysis of the backward-wave traveling-wave tube, Proc. IRE 42, 930 (June) (1954)

    Article  Google Scholar 

  36. J.R. Pierce, R. Kompfner, Nat’l Academies Press, Biographical Memoirs, pp. 156–181 (1983). Use also: http://books.nap.edu/books/0309033918/html/156.html

  37. J. Arnaud, Backward wave tubes, in The Encyclopedia of Electronics, ed. by C. Susskind (Reinhold Publishing Corporation, New York, 1962)

    Google Scholar 

  38. R.Q. Twiss, Radiation transfer and the possibility of negative absorption in radio astronomy, Aust. J. Phys. 11, 424, 564 (1958)

    Google Scholar 

  39. J. Schneider, Stimulated emission of radiation by relativistic electrons in a magnetic field, Phys. Rev. Lett. 2, 504 (1959)

    Article  Google Scholar 

  40. A.V. Gaponov, Izv. VUZ Radiofiz. 2, 450, 837 (1959)

    Google Scholar 

  41. H. Kleinwächter, Zur Wanderfeldröhre, Elektrotechnik 4, 245 (1950) (in German)

    Google Scholar 

  42. J.L. Hirshfield, J.M. Wachtel, Electron cyclotron masses, Phys. Rev. Lett. 12, 533 (1964)

    Article  Google Scholar 

  43. A.V. Gaponov, M.I. Petelin, V.K. Yulpatov, The induced radiation of excited classifical oscillators and its use in high frequency electronics, Izv. VUZ Radiofiz. 10, 1414 (1967)

    Google Scholar 

  44. V.L. Granatstein, I. Alexeff, et al., High-power Microwave Sources (Artech House, Boston, London, 1987)

    Google Scholar 

  45. J. Benford, J. Swegle, High-power Microwave Sources (Artech House, Boston, London, 1992)

    Google Scholar 

  46. C.J. Edgcombe (ed.), Gyrotron Oscillators – their Principles and Practice (Taylor & Francis, London, 1993)

    Google Scholar 

  47. M.V. Kartikeyan, E. Borie, M.K.A. Thumm, Gyrotrons – High Power Microwave and Millimeter Wave Technology (Springer, Berlin, 2003)

    Google Scholar 

  48. T.C. Marshall, Free Electron Lasers (MacMillan, New York, 1985)

    Google Scholar 

  49. P. Sprangle, T. Coffey, New high power coherent radiation sources, Infrared Millim. Waves 13, 19 (1985)

    Google Scholar 

  50. H.P. Freund, T.M. Antonsen Jr., Principles of Free-electron Lasers, 2d edn. (Chapman & Hall, London, 1996)

    Google Scholar 

  51. H.P. Freund, G.R. Neil, Free-electron lasers: Vacuum electronic generators of coherent radisation, Proc. IEEE 87, 782 (1999)

    Article  Google Scholar 

  52. M.I. Petelin, One century of cyclotron radiation, IEEE Trans. Plasma Sci. PS-27, 294 (1999)

    Article  Google Scholar 

  53. A.V. Gaponov-Grekhov, V.L. Granatstein, Application of High-Power microwaves (Artech House, Boston, London, 1994)

    Google Scholar 

  54. M. Thumm, State-of-the-art of high power gyro-devices and free electron masers, Update 2006, FZKA 7289 (2007)

    Google Scholar 

  55. K.R. Chu, Overview of research on the gyrotron traveling-wave amplifier, IEEE Trans. Plasma Sci. PS-30, 903 (2002)

    Google Scholar 

  56. G.G. Denisov, V.L. Bratman, A.D.R. Phelps, S.V. Samsonov, Gyro-TWT with a helical operating wavequide: new possibilities to enhance efficiency and frequency bandwidth, IEEE Trans. Plasma Sci. PS-26, 508 (1998)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Faillon, G., Kornfeld, G., Bosch, E., Thumm, M.K. (2008). Microwave Tubes. In: Eichmeier, J.A., Thumm, M.K. (eds) Vacuum Electronics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71929-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71929-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71928-1

  • Online ISBN: 978-3-540-71929-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics