Skip to main content

Abstract

Over the last 20 years, the systematic application of molecular methodologies has revealed a series of cellular events that contribute to cancer development. Although it is clear that each tumor type is unique in terms of pathogenesis and progression, carcinogenesis seems to follow some characteristic fundamental principles, including nonlethal genetic damage, clonal expansion of a single transformed cell, as well as alterations in proto-oncogenes and tumor suppressor genes, all presented in a progressive, multistep fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fearon ER, Vogelstein B (1990) A genetic model for col-orectal tumorigenesis. Cell 61:759–767

    Article  PubMed  CAS  Google Scholar 

  2. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  3. Goustin AS, Leof EB, Shipley GD et al (1986) Growth-Factors and Cancer. Cancer Research 46:1015–1029

    PubMed  CAS  Google Scholar 

  4. Lesko E, Majka M (2008) The biological role of HGF-MET axis in tumor growth and development of metastasis. Front Biosci 13:1271–1280

    Article  PubMed  CAS  Google Scholar 

  5. Jones AV, Cross NC (2004) Oncogenic derivatives of platelet-derived growth factor receptors. Cell Mol Life Sci 61:2912–2923

    Article  PubMed  CAS  Google Scholar 

  6. Simon MP, Pedeutour F, Sirvent N et al (1997) Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protu-berans and giant-cell fibroblastoma. Nat Genet 15:95–98

    Article  PubMed  CAS  Google Scholar 

  7. Mattila MM, Harkonen PL (2007) Role of fibroblast growth factor 8 in growth and progression of hormonal cancer. Cytokine Growth Factor Rev 18:257–266

    Article  PubMed  CAS  Google Scholar 

  8. Dvorak P, Dvorakova D, Hampl A (2006) Fibroblast growth factor signaling in embryonic and cancer stem cells. FEBS Lett 580:2869–2874

    Article  PubMed  CAS  Google Scholar 

  9. Desiderio MA (2007) Hepatocyte growth factor in invasive growth of carcinomas. Cell Mol Life Sci 64:1341–1354

    Article  PubMed  CAS  Google Scholar 

  10. Normanno N, Bianco C, De Luca A et al (2001) The role of EGF-related peptides in tumor growth. Front Biosci 6: D685–707

    Article  PubMed  CAS  Google Scholar 

  11. Nguyen DM, Schrump DS (2004) Growth factor receptors as targets for lung cancer therapy. Semin Thorac Cardiovasc Surg 16:3–12

    Article  PubMed  Google Scholar 

  12. Ruco LP, Stoppacciaro A, Ballarini F et al (2001) Met protein and hepatocyte growth factor (HGF) in papillary carcinoma of the thyroid: evidence for a pathogenetic role in tumourigenesis. J Pathol 194:4–8

    Article  PubMed  CAS  Google Scholar 

  13. Maulik G, Shrikhande A, Kijima T et al (2002) Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev 13:41–59

    Article  PubMed  CAS  Google Scholar 

  14. Abd El-Rehim DM, Pinder SE, Paish CE et al (2004) Expression and co-expression of the members of the epidermal growth factor receptor (EGFR) family in invasive breast carcinoma. Br J Cancer 91:1532–1542

    Article  PubMed  CAS  Google Scholar 

  15. Normanno N, Bianco C, De Luca A et al (2003) Target-based agents against ERBB receptors and their ligands: a novel approach to cancer treatment. Endocr Relat Cancer 10:1–21

    Article  PubMed  CAS  Google Scholar 

  16. Salomon DS, Brandt R, Ciardiello F et al (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19:183–232

    Article  PubMed  CAS  Google Scholar 

  17. Normanno N, De Luca A, Bianco C et al (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366:2–16

    Article  PubMed  CAS  Google Scholar 

  18. Stern DF (2000) Tyrosine kinase signalling in breast cancer: ErbB family receptor tyrosine kinases. Breast Cancer Res. 2:176–83”

    Article  PubMed  CAS  Google Scholar 

  19. Ménard S, Casalini P, Campiglio M et al (2004) Role of HER2/neu in tumor progression and therapy. Cell Mol Life Sci 61:2965–2978

    Article  PubMed  CAS  Google Scholar 

  20. Fleming TP, Saxena A, Clark WC et al (1992) Amplification and/or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors. Cancer Res 52:4550–4553

    PubMed  CAS  Google Scholar 

  21. Smith JS, Wang XY, Qian J et al (2000) Amplification of the platelet-derived growth factor receptor-A (PDGFRA) gene occurs in oligodendrogliomas with grade IV anaplastic features. J Neuropathol Exp Neurol 59:495–503

    PubMed  CAS  Google Scholar 

  22. MacDonald TJ, Brown KM, LaFleur B et al (2001) Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat Genet 29:143–152

    Article  PubMed  CAS  Google Scholar 

  23. Santoro M, Carlomagno F, Melillo RM et al (2004) Dysfunction of the RET receptor in human cancer. Cell Mol Life Sci 61:2954–2964

    Article  PubMed  CAS  Google Scholar 

  24. Arighi E, Borrello MG, Sariola H (2005) RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev 16:441–467

    Article  PubMed  CAS  Google Scholar 

  25. Asai N, Jijiwa M, Enomoto A et al (2006) RET receptor signaling: dysfunction in thyroid cancer and Hirschsprung's disease. Pathol Int 56:164–172

    Article  PubMed  CAS  Google Scholar 

  26. Stephens P, Hunter C, Bignell G et al (2004) Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 431:525–526

    Article  PubMed  CAS  Google Scholar 

  27. Shigematsu H, Takahashi T, Nomura M et al (2005) Somatic mutations of the HER2 kinase domain in lung adenocarcino-mas. Cancer Res 65:1642–1646

    Article  PubMed  CAS  Google Scholar 

  28. Fletcher JA, Rubin BP (2007) KIT mutations in GIST. Curr Opin Genet Dev 17:3–7

    Article  PubMed  CAS  Google Scholar 

  29. Miettinen M, Lasota J (2005) KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl Immuno-histochem Mol Morphol 13:205–220

    Article  CAS  Google Scholar 

  30. Kitamura Y, Hirotab S (2004) Kit as a human oncogenic tyrosine kinase. Cell Mol Life Sci 61:2924–2931

    Article  PubMed  CAS  Google Scholar 

  31. Rajalingam K, Schreck R, Rapp UR et al (2007) Ras onco-genes and their downstream targets. Biochim Biophys Acta 1773:1177–1195

    Article  PubMed  CAS  Google Scholar 

  32. McCubrey JA, Steelman LS, Chappell WH et al (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773:1263–1284

    Article  PubMed  CAS  Google Scholar 

  33. Molina JR, Adjei AA (2006) The Ras/Raf/MAPK pathway. J Thorac Oncol 1:7–9

    Article  PubMed  Google Scholar 

  34. Chang F, Lee JT, Navolanic PM et al (2003) Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17:590–603

    Article  PubMed  CAS  Google Scholar 

  35. Fresno Vara JA, Casado E, de Castro J et al (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30:193–204

    Article  PubMed  CAS  Google Scholar 

  36. Liu W, Bagaitkar J, Watabe K (2007) Roles of AKT signal in breast cancer. Front Biosci 12:4011–4019

    Article  PubMed  CAS  Google Scholar 

  37. Martelli AM, Nyakern M, Tabellini G et al (2006) Phospho-inositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia 20:911–928

    Article  PubMed  CAS  Google Scholar 

  38. Verma A, Kambhampati S, Parmar S et al (2003) Jak family of kinases in cancer. Cancer Metastasis Rev 22:423–434

    Article  PubMed  CAS  Google Scholar 

  39. Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/ STAT signaling pathway. J Cell Sci 117:1281–1283

    Article  PubMed  CAS  Google Scholar 

  40. Khwaja A (2006) The role of Janus kinases in haemopoiesis and haematological malignancy. Br J Haematol 134:366–384

    Article  PubMed  CAS  Google Scholar 

  41. Valentino L, Pierre J (2006) JAK/STAT signal transduction: regulators and implication in hematological malignancies. Biochem Pharmacol 71:713–721

    Article  PubMed  CAS  Google Scholar 

  42. Amati B, Frank SR, Donjerkovic D et al (2001) Function of the c-Myc oncoprotein in chromatin remodeling and transcription. Biochim Biophys Acta 1471:M135–145

    PubMed  CAS  Google Scholar 

  43. Lutz W, Leon J, Eilers M (2002) Contributions of Myc to tumorigenesis. Biochim Biophys Acta 1602:61–71

    PubMed  CAS  Google Scholar 

  44. Thomas WD, Raif A, Hansford L et al (2004) N-myc transcription molecule and oncoprotein. Int J Biochem Cell Biol 36:771–775

    Article  PubMed  CAS  Google Scholar 

  45. Cowling VH, Cole MD (2006) Mechanism of transcriptional activation by the Myc oncoproteins. Semin Cancer Biol 16:242–252

    Article  PubMed  CAS  Google Scholar 

  46. Sala A (2005) B-MYB, a transcription factor implicated in regulating cell cycle, apoptosis and cancer. Eur J Cancer 41:2479–2484

    Article  PubMed  CAS  Google Scholar 

  47. Milde-Langosch K (2005) The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer 41:2449–2461

    Article  PubMed  CAS  Google Scholar 

  48. Vogt PK (2001) Jun, the oncoprotein. Oncogene 20:2365–2377

    Article  PubMed  CAS  Google Scholar 

  49. Safe S, Abdelrahim M (2005) Sp transcription factor family and its role in cancer. Eur J Cancer 41:2438–2448

    Article  PubMed  CAS  Google Scholar 

  50. Seth A, Watson DK (2005) ETS transcription factors and their emerging roles in human cancer. Eur J Cancer 41:2462–2478

    Article  PubMed  CAS  Google Scholar 

  51. Musgrove EA (2006) Cyclins: roles in mitogenic signaling and oncogenic transformation. Growth Factors 24:13–19

    Article  PubMed  CAS  Google Scholar 

  52. Lee MH, Yang HY (2003) Regulators of G1 cyclin-dependent kinases and cancers. Cancer Metastasis Rev 22:435–449

    Article  PubMed  CAS  Google Scholar 

  53. Barton MC, Akli S, Keyomarsi K (2006) Deregulation of cyclin E meets dysfunction in p53: closing the escape hatch on breast cancer. J Cell Physiol 209:686–694

    Article  PubMed  CAS  Google Scholar 

  54. Yam CH, Fung TK, Poon RY (2002) Cyclin A in cell cycle control and cancer. Cell Mol Life Sci 59:1317–1326

    Article  PubMed  CAS  Google Scholar 

  55. Tashiro E, Tsuchiya A, Imoto M (2007) Functions of cyclin D1 as an oncogene and regulation of cyclin D1 expression. Cancer Sci 98:629–635

    Article  PubMed  CAS  Google Scholar 

  56. Gladden AB, Diehl JA (2005) Location, location, location: the role of cyclin D1 nuclear localization in cancer. J Cell Biochem 96:906–913

    Article  PubMed  CAS  Google Scholar 

  57. Tsantoulis PK, Gorgoulis VG (2005) Involvement of E2F transcription factor family in cancer. Eur J Cancer 41:2403–2414

    Article  PubMed  CAS  Google Scholar 

  58. Johnson DG, Degregori J (2006) Putting the Oncogenic and Tumor Suppressive Activities of E2F into Context. Curr Mol Med 6:731–738

    PubMed  CAS  Google Scholar 

  59. Semple JW, Duncker BP (2004) ORC-associated replication factors as biomarkers for cancer. Biotechnol Adv 22:621–631

    Article  PubMed  CAS  Google Scholar 

  60. Karakaidos P, Taraviras S, Vassiliou LV et al (2004) Overexpression of the replication licensing regulators hCdt1 and hCdc6 characterizes a subset of non-small-cell lung carcinomas: synergistic effect with mutant p53 on tumor growth and chromosomal instability--evidence of E2F-1 transcrip-tional control over hCdt1. Am J Pathol 165:1351–1365

    Article  PubMed  CAS  Google Scholar 

  61. Liontos M, Koutsami M, Sideridou M et al (2007) Deregulated overexpression of hCdt1 and hCdc6 promotes malignant behavior. Cancer Res 67:10899–10909

    Article  PubMed  CAS  Google Scholar 

  62. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  PubMed  CAS  Google Scholar 

  63. Bartkova J, Horejsi Z, Koed K et al (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:864–870

    Article  PubMed  CAS  Google Scholar 

  64. Gorgoulis VG, Vassiliou LV, Karakaidos P et al (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434:907–913

    Article  PubMed  CAS  Google Scholar 

  65. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    Article  PubMed  CAS  Google Scholar 

  66. Giacinti C, Giordano A (2006) RB and cell cycle progression. Oncogene 25:5220–5227

    Article  PubMed  CAS  Google Scholar 

  67. Sharpless NE (2005) INK4a/ARF: a multifunctional tumor suppressor locus. Mutat Res 576:22–38

    Article  PubMed  CAS  Google Scholar 

  68. Gallagher SJ, Kefford RF, Rizos H (2006) The ARF tumour suppressor. Int J Biochem Cell Biol 38:1637–1641

    Article  PubMed  CAS  Google Scholar 

  69. Kim WY, Sharpless NE (2006) The regulation of INK4/ARF in cancer and aging. Cell 127:265–275

    Article  PubMed  CAS  Google Scholar 

  70. Kinzler KW, Vogelstein B (1997) Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386:761–763

    Article  PubMed  CAS  Google Scholar 

  71. Bloom J, Pagano M (2003) Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin Cancer Biol 13:41–47

    Article  PubMed  CAS  Google Scholar 

  72. Alkarain A, Slingerland J (2004) Deregulation of p27 by oncogenic signaling and its prognostic significance in breast cancer. Breast Cancer Res 6:13–21

    Article  PubMed  CAS  Google Scholar 

  73. Kudo Y, Kitajima S, Ogawa I et al (2005) Down-regulation of Cdk inhibitor p27 in oral squamous cell carcinoma. Oral Oncol 41:105–116

    Article  PubMed  CAS  Google Scholar 

  74. Sicinski P, Zacharek S, Kim C (2007) Duality of p27Kip1 function in tumorigenesis. Genes Dev 21:1703–1706

    Article  PubMed  CAS  Google Scholar 

  75. Cardozo T, Pagano M (2007) Wrenches in the works: drug discovery targeting the SCF ubiquitin ligase and APC/C complexes. BMC Biochem 8:S9

    Article  PubMed  CAS  Google Scholar 

  76. Chu EC, Tarnawski AS (2004) PTEN regulatory functions in tumor suppression and cell biology. Med Sci Monit 10:RA235–241

    PubMed  CAS  Google Scholar 

  77. Leslie NR, Downes CP (2004) PTEN function: how normal cells control it and tumour cells lose it. Biochem J 382:1–11

    Article  PubMed  CAS  Google Scholar 

  78. Chow LM, Baker SJ (2006) PTEN function in normal and neoplastic growth. Cancer Lett 241:184–196

    Article  PubMed  CAS  Google Scholar 

  79. Maehama T (2007) PTEN: its deregulation and tumorigen-esis. Biol Pharm Bull 30:1624–1627

    Article  PubMed  CAS  Google Scholar 

  80. Adams JM (2003) Ways of dying: multiple pathways to apoptosis. Genes Dev 17:2481–2495

    Article  PubMed  CAS  Google Scholar 

  81. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  PubMed  CAS  Google Scholar 

  82. Hinds MG, Day CL (2005) Regulation of apoptosis: uncovering the binding determinants. Curr Opin Struct Biol 15:690–699

    Article  PubMed  CAS  Google Scholar 

  83. Reichmann E (2002) The biological role of the Fas/FasL system during tumor formation and progression. Semin Cancer Biol 12:309–315

    Article  PubMed  CAS  Google Scholar 

  84. Adams JM, Cory S (2007) Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 19:488–496

    Article  PubMed  CAS  Google Scholar 

  85. Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337

    Article  PubMed  CAS  Google Scholar 

  86. Dimri GP (2005) What has senescence got to do with cancer? Cancer Cell 7:505–512

    Article  PubMed  CAS  Google Scholar 

  87. Di Micco R, Fumagalli M, di Fagagna F (2007) Breaking news: high-speed race ends in arrest--how oncogenes induce senescence. Trends Cell Biol 17:529–536

    Article  PubMed  CAS  Google Scholar 

  88. Schmitt CA (2007) Cellular senescence and cancer treatment. Biochim Biophys Acta 1775:5–20

    PubMed  CAS  Google Scholar 

  89. Schmitt E, Paquet C, Beauchemin M et al (2007) DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J Zhejiang Univ Sci B 8:377–397

    Article  PubMed  CAS  Google Scholar 

  90. Itahana K, Campisi J, Dimri GP (2004) Mechanisms of cellular senescence in human and mouse cells. Biogerontology 5:1–10

    Article  PubMed  CAS  Google Scholar 

  91. Cheung AL, Deng W (2008) Telomere dysfunction, genome instability and cancer. Front Biosci 13:2075–2090

    Article  PubMed  CAS  Google Scholar 

  92. Schinzel AC, Hahn WC (2008) Oncogenic transformation and experimental models of human cancer. Front Biosci 13:71–84

    Article  PubMed  CAS  Google Scholar 

  93. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  PubMed  CAS  Google Scholar 

  94. Holmquist GP (1998) Endogenous lesions, S-phase-independent spontaneous mutations, and evolutionary strategies for base excision repair. Mutat Res 400:59–68

    Article  PubMed  CAS  Google Scholar 

  95. Kovtum IV, McMurray CT (2007) Crosstalk of DNA gly-cosylases with pathways other than base excision repair. DNA repair 6:517–519

    Article  CAS  Google Scholar 

  96. Branzei D, Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Nature Rev Mol Cell Biol 9:297–308

    Article  CAS  Google Scholar 

  97. Rajagopalan H, Nowak MA, Vogelstein B et al (2003) The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer 3:695–701

    Article  PubMed  CAS  Google Scholar 

  98. Hsieh P, Yamane K (2008) DNA mismatch repair: molecular mechanism, cancer, and ageing. Mech Ageing Dev 129:391–407

    Article  PubMed  CAS  Google Scholar 

  99. Bayani J, Selvarajah S, Maire G et al (2007) Genomic mechanisms and measurement of structural and numerical instability in cancer cells. Semin Cancer Biol 17:5–18

    Article  PubMed  CAS  Google Scholar 

  100. Holand AJ, Cleveland DW (2009) Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nature Rev Mol Cell Biol 10:478–487

    Article  CAS  Google Scholar 

  101. Wyman C, Kanaar R (2006) DNA double-strand break repair: all's well that ends well. Annu Rev Genet 40:363–383

    Article  PubMed  CAS  Google Scholar 

  102. Cahill D, Connor B, Carney JP (2006) Mechanisms of eukaryotic DNA double strand break repair. Front Biosci 11:1958 –1976

    Article  PubMed  CAS  Google Scholar 

  103. Scott SP, Pandita TK (2006) The cellular control of DNA double-strand breaks. J Cell Biochem 99:1463 –1475

    Article  PubMed  CAS  Google Scholar 

  104. Helleday T, Lo J, van Gent DC et al (2007) DNA double strand break repair: from mechanistic understanding to cancer treatment. DNA Repair (Amst) 6:923 –935

    Article  CAS  Google Scholar 

  105. van Gent DC, Hoeijmakers JHJ, Kanaar R (2001) Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2:196–206

    Article  PubMed  Google Scholar 

  106. Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15:2177 –2196

    Article  PubMed  CAS  Google Scholar 

  107. Durocher D, Jackson SP (2001) DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr Opin Cell Biol 13:225 –231

    Article  PubMed  CAS  Google Scholar 

  108. Shiloh Y (2001) ATM and ATR: networking cellular responses to DNA damage. Curr Opin Genet Dev 11:71 –77

    Article  PubMed  CAS  Google Scholar 

  109. Paulsen RD, Cimprich KA (2007) The ATR pathway: fine tuning the fork. DNA Repair (Amst) 6:953 –966

    Article  CAS  Google Scholar 

  110. Riches LC, Lynch AM, Gooderham NJ (2008) Early events in the mammalian response to DNA double-strand breaks. Mutagenesis 23:331 –339

    Article  PubMed  CAS  Google Scholar 

  111. Reinhardt CH, Yaffe MB (2009) Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol 21:245–255

    Article  PubMed  CAS  Google Scholar 

  112. Cimprich KA, Cortez D (2008) ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9:616–627

    Article  PubMed  CAS  Google Scholar 

  113. Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–1548

    Article  PubMed  CAS  Google Scholar 

  114. Jackson SP (2006) ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8:37–45

    Article  PubMed  CAS  Google Scholar 

  115. Sartori AA, Lukas C, Coates J et al (2007) Human CtIP promotes DNA end resection. Nature 450:509–514

    Article  PubMed  CAS  Google Scholar 

  116. Vousden KH, Prives C (2009) Blinded by the Light: The Growing Complexity of p53. Cell 137:413–431

    Article  PubMed  CAS  Google Scholar 

  117. Lukas C, Falck J, Bartkova J et al (2003) Distinct spa-tiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol 5:255–260

    Article  PubMed  CAS  Google Scholar 

  118. Bekker-Jensen S, Lukas C, Kitagawa R et al (2006) Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J Cell Biol 173:195–206

    Article  PubMed  CAS  Google Scholar 

  119. Lukas J, Lukas C, Bartek J (2004) Mammalian cell cycle checkpoints: signaling pathways and their organization in space and time. DNA Repair 3:997–1007

    Article  PubMed  CAS  Google Scholar 

  120. Bernstein C, Bernstein H, Payne CM et al (2002) DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogene-sis. Mutat Res 511:145–178

    Article  PubMed  CAS  Google Scholar 

  121. Frieberg EC (2003) DNA damage and repair. Nature 412:436–440

    Article  CAS  Google Scholar 

  122. Misteli T, Soutoglou E (2009) The emerging role of nuclear architecture in DNA repair and genome maintenance. Nature Rev Mol Cell Biol 10:243–254

    Article  CAS  Google Scholar 

  123. Donigan K, Sweasy JB (2009) Sequence context-specific muta-genesis and base excision repair. Mol Carcinog 48:362–368

    Article  PubMed  CAS  Google Scholar 

  124. Hedge ML, Hazra TK, Mitra S (2008) Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 18:27–47

    Article  CAS  Google Scholar 

  125. Scolnick DM, Halazonetis TD (2000) Chfr defines a mitotic stress checkpoint that delays entry into metaphase. Nature 406:430–435

    Article  PubMed  CAS  Google Scholar 

  126. Steigemann P, Wurzenberger C, Schmitz MH et al (2009) Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136:473–484

    Article  PubMed  CAS  Google Scholar 

  127. Kops GJPL, Weaver BAA, Cleveland DW (2001) On the road to cancer: Aneuploidy and the mitotic checkpoint. Nature Rev Cancer 5:773–785

    Article  CAS  Google Scholar 

  128. Eichhorn ME, Kleespies A, Angele MK et al (2007) Angiogenesis in cancer: molecular mechanisms, clinical impact. Langenbecks Arch Surg 392:371–379

    Article  PubMed  CAS  Google Scholar 

  129. Schedin P, Elias A (2004) Multistep tumorigenesis and the microenvironment. Breast Cancer Res 6:93–101

    Article  PubMed  CAS  Google Scholar 

  130. Masterson J, O'Dea S (2007) Posttranslational truncation of E-cadherin and significance for tumour progression. Cells Tissues Organs 185:175–179

    Article  PubMed  CAS  Google Scholar 

  131. Moschos SJ, Drogowski LM, Reppert SL et al (2007) Integrins and cancer. Oncology (Williston Park) 21:13–20

    Google Scholar 

  132. Klein G, Vellenga E, Fraaije MW et al (2004) The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Crit Rev Oncol Hematol 50:87–100

    Article  CAS  Google Scholar 

  133. Boyd JA, Barrett JC (1990) Genetic and cellular basis of multistep carcinogenesis. Pharmacol Ther 46:469–486

    Article  PubMed  CAS  Google Scholar 

  134. Barrett JC (1993) Mechanisms of multistep carcinogenesis and carcinogen risk assessment. Environ Health Perspect 100:9–20

    Article  PubMed  CAS  Google Scholar 

  135. Beckmann MW, Niederacher D, Schnurch HG et al (1997) Multistep carcinogenesis of breast cancer and tumour heterogeneity. J Mol Med 75:429–439

    Article  PubMed  CAS  Google Scholar 

  136. Cho KR, Vogelstein B (1992) Genetic alterations in the adenoma--carcinoma sequence. Cancer 70:1727–1731

    Article  PubMed  CAS  Google Scholar 

  137. Pfeifer GP, Denissenko MF, Olivier M et al (2002) Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 21:7435–7451

    Article  PubMed  CAS  Google Scholar 

  138. Gupta A, Rosenberger SF, Bowden GT (1999) Increased ROS levels contribute to elevated transcription factor and MAP kinase activities in malignantly progressed mouse keratinocyte cell lines. Carcinogenesis 20:2063–2073

    Article  PubMed  CAS  Google Scholar 

  139. Suh YA, Arnold RS, Lassegue B et al (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401:79–82

    Article  PubMed  CAS  Google Scholar 

  140. Luch A (2005) Nature and nurture — lessons from chemical carcinogenesis. Nat Rev Cancer 5:113–125

    Article  PubMed  CAS  Google Scholar 

  141. Verheyde J, de Saint-Georges L, Leyns L et al (2006) The role of Trp53 in the transcriptional response to ionizing radiation in the developing brain. DNA Res 13:65–75

    Article  PubMed  CAS  Google Scholar 

  142. Maity A, McKenna WG, Muschel RJ (1994) The molecular basis for cell cycle delays following ionizing radiation: a review. Radiother Oncol 31:1–13

    Article  PubMed  CAS  Google Scholar 

  143. Bernhard EJ, Maity A, Muschel RJ et al (1995) Effects of ionizing radiation on cell cycle progression. A review. Radiat Environ Biophys 34:79–83

    Article  PubMed  CAS  Google Scholar 

  144. Unsal-Kacmaz K, Chastain PD, Qu PP et al (2007) The human Tim/Tipin complex coordinates an Intra-S checkpoint response to UV that slows replication fork displacement. Mol Cell Biol 27:3131–3142

    Article  PubMed  CAS  Google Scholar 

  145. zur Hausen H (2000) Papillomaviruses causing cancer: evasion from host-cell control in early events in carcino-genesis. J Natl Cancer Inst 92:690–698

    Article  PubMed  CAS  Google Scholar 

  146. Lowy DR, Schiller JT (2006) Prophylactic human papillo-mavirus vaccines. J Clin Invest 116:1167–1173

    Article  PubMed  CAS  Google Scholar 

  147. Thompson MP, Kurzrock R (2004) Epstein-Barr virus and cancer. Clin Cancer Res 10:803–821

    Article  PubMed  CAS  Google Scholar 

  148. Cathomas G (2003) Kaposi's sarcoma-associated herpesvi-rus (KSHV)/human herpesvirus 8 (HHV-8) as a tumour virus. Herpes 10:72–77

    PubMed  Google Scholar 

  149. Szabo E, Paska C, Kaposi Novak P et al (2004) Similarities and differences in hepatitis B and C virus induced hepato-carcinogenesis. Pathol Oncol Res 10:5–11

    Article  PubMed  CAS  Google Scholar 

  150. Fry DG, Milam LD, Maher VM et al (1986) Transformation of diploid human fibroblasts by DNA transfection with the v-sis oncogene. J Cell Physiol 128:313–321

    Article  PubMed  CAS  Google Scholar 

  151. Gong M, Semus HL, Bird KJ et al (1998) Differential selection of cells with proviral c-myc and c-ERBB integrations after avian leukosis virus infection. J Virol 72:5517–5525

    PubMed  CAS  Google Scholar 

  152. Sun SC, Ballard DW (1999) Persistent activation of NF-kappaB by the tax transforming protein of HTLV-1: hijacking cellular IkappaB kinases. Oncogene 18:6948–6958

    Article  PubMed  CAS  Google Scholar 

  153. Marsh D, Zori R (2002) Genetic insights into familial cancers--update and recent discoveries. Cancer Lett 181:125–164

    Article  PubMed  CAS  Google Scholar 

  154. Parl FF (2005) Glutathione S-transferase genotypes and cancer risk. Cancer Lett 221:123–129

    Article  PubMed  CAS  Google Scholar 

  155. Hein DW (2000) N-Acetyltransferase genetics and their role in predisposition to aromatic and heterocyclic amine-induced carcinogenesis. Toxicol Lett 112–113:349–356

    Article  PubMed  Google Scholar 

  156. Turesky RJ (2004) The role of genetic polymorphisms in metabolism of carcinogenic heterocyclic aromatic amines. Curr Drug Metab 5:169–180

    Article  PubMed  CAS  Google Scholar 

  157. Sissung TM, Price DK, Sparreboom A et al (2006) Pharmacogenetics and regulation of human cytochrome P450 1B1: implications in hormone-mediated tumor metabolism and a novel target for therapeutic intervention. Mol Cancer Res 4:135–150

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zachariadis, M., Evangelou, K., Kastrinakis, N.G., Papanagnou, P., Gorgoulis, V.G. (2010). Molecular Carcinogenesis. In: Athanasiou, T., Debas, H., Darzi, A. (eds) Key Topics in Surgical Research and Methodology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71915-1_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71915-1_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71914-4

  • Online ISBN: 978-3-540-71915-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics