Skip to main content

Afferente Konditionierung

  • Chapter
Das TMS-Buch

Auszug

Die neuronale Erregbarkeit im motorischen System wird kontinuierlich an den über periphere Afferenzen vermittelten, sensorischen Kontext angepasst. Diese enge funktionelle Kopplung des sensorischen und motorischen Systems ermöglicht eine flexible Anpassung motorischer Programme an die aktuellen Umweltbedingungen. Eine Möglichkeit, sensomotorische Integrationsprozesse zu untersuchen, bietet die Aufzeichnung der durch sensorische Stimuli ausgelösten reflektorischen Muskelaktivität. So lässt sich nach einem unerwarteten akustischen Reiz eine rasche, unwillkürliche Muskelaktivierung mit charakteristischem Verteilungsmuster ableiten (Schreckreflex (engl. startle reflex)) oder es kommt zu einem reflektorischen Augenschluss nach elektrischer Stimulation des N. supraorbitalis (Blinzelreflex (engl. blink reflex)). Auch können wiederholt applizierte elektrische periphere Stimuli oder mechanische Dehnungsreize, die willkürliche, tonische elektromyographische Muskelaktivität in den kleinen Handmuskeln modulieren. Dabei scheint eine späte Komponente durch einen transkortikalen Reflex vermittelt zu werden (Reflex langer Latenz, engl. long-latency reflex). Die Aufzeichnung von Reflexantworten erlaubt jedoch nur eine indirekte Untersuchung zentralnervöser sensomotorischer Integrationsprozesse, da die konditionierenden Effekte der sensorischen Stimulation am Endorgan des motorischen Systems, dem Muskel, aufgezeichnet werden. Aussagen darüber, ob die konditionierenden Effekte auf kortikaler, subkortikaler oder spinaler Ebene vermittelt werden, sind nur eingeschränkt möglich.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  • Aimonetti JM, Nielsen JB (2001) Changes in Intracortical excitability induced by stimulation of wrist afferents in man. J Physiol 534: 891–902

    Article  PubMed  CAS  Google Scholar 

  • Bertolasi L, Priori A, Tinazzi M, Bertasi V et al. (1998) Inhibitory action of forearm flexor muscle afferents on corticospinal outputs to antagonist muscles in humans. J Physiol 511: 947–956 Der Artikel beschreibt erstmals die zentrale sensomotorische reziproke Hemmung.

    Article  PubMed  CAS  Google Scholar 

  • Classen J, Steinfelder B, Liepert J, Stefan K et al. (2000) Cutaneomotor integration in humans is somatotopically organized at various levels of the nervous system and is task dependent. Exp Brain Res 130: 48–59

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Corwell B, Hallett M (1999) Modulation of motor cortex excitability by median nerve and digit stimulation. Exp Brain Res 129: 77–86 Diese Studie beschreibt erstamls Eigenschaften und funktionelle Bedeutung der afferenten sensomotorischen Hemmung langer Latenz.

    Article  PubMed  CAS  Google Scholar 

  • Day BL, Riescher H, Struppler A, Rothwell JC et al. (1991) Changes in the response to magnetic and electrical stimulation of the motor cortex following muscle stretch in man. J Physiol 433: 41–57

    PubMed  CAS  Google Scholar 

  • Di Lazzaro V, Oliviero A, Profice P, Pennisi MA et al. (2000) Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp Brain Res 135: 455–461 In dieser Arbeit wird die pharmakologische Beteiligung von Achethylcholin an der afferenten sensomotorischen Hemmung kurzer Latenz erstmals beschrieben. Aufgrund dieser Arbeit folgen weitere Studien zur Anwendung der afferenten sensomotorischen Hemmung kurzer Latenz bei neuropsychiatrischen Erkrankungen wie dem M. Alzheimer.

    Article  PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Tonali PA, Marra C et al. (2002) Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology 59: 392–397

    PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Pilato F, Saturno E et al. (2005a) Neurophysiological predictors of long term response to AChE inhibitors in AD patients. J Neurol Neurosurg Psychiatry 76: 1064–1069

    Article  PubMed  Google Scholar 

  • Di Lazzaro V, Pilato F, Dileone M, Tonali PA et al. (2005b) Dissociated effects of diazepam and lorazepam on short-latency afferent inhibition. J Physiol 569: 315–323

    Article  PubMed  Google Scholar 

  • Di Lazzaro V, Pilato F, Dileone M, Saturno E et al. (2006) In vivo cholinergic circuit evaluation in frontotemporal and Alzheimer dementias. Neurology 66: 1111–1113

    Article  PubMed  Google Scholar 

  • Entezari-Taher M, Dean AC (2000) Alteration of motor cortex excitability in response to intermittent photic stimulation. Clin Neurophysiol 111: 1809–1812

    Article  PubMed  CAS  Google Scholar 

  • Fisher RJ, Sharott A, Kuhn AA, Brown P (2004) Effects of combined cortical and acoustic stimuli on muscle activity. Exp Brain Res 157: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Furubayashi T, Ugawa Y, Terao Y, Hanajima R et al. (2000) The human hand motor area is transiently suppressed by an unexpected auditory stimulus. Clin Neurophysiol 111: 178–183

    Article  PubMed  CAS  Google Scholar 

  • Kessler KR, Ruge D, Ilic TV, Ziemann U (2005) Short latency afferent inhibition and facilitation in patients with writer’s cramp. Mov Disord 20: 238–242

    Article  PubMed  Google Scholar 

  • Kobayashi M, Ng J, Theoret H, Pascual-Leone A (2003) Modulation of intracortical neuronal circuits in human hand motor area by digit stimulation. Exp Brain Res 149: 1–8

    PubMed  Google Scholar 

  • Kofler M, Glocker FX, Leis AA, Seifert C et al. (1998) Modulation of upper extremity motoneurone excitability following noxious finger tip stimulation in man: a study with transcranial magnetic stimulation. Neurosci Lett 246: 97–100

    Article  PubMed  CAS  Google Scholar 

  • Kofler M, Fuhr P, Leis AA, Glocker FX et al. (2001) Modulation of upper extremity motor evoked potentials by cutaneous afferents in humans. Clin Neurophysiol 112: 1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Oliviero A, Leon AM, Holler I, Vila JF et al. (2005) Reduced sensorimotor inhibition in the ipsilesional motor cortex in a patient with chronic stroke of the paramedian thalamus. Clin Neurophysiol 116: 2592–2598

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz K, Pesenti A, Paulus W, Tergau F (2003) Focal reduction of intracortical inhibition in the motor cortex by selective proprioceptive stimulation. Exp Brain Res 149: 9–16

    PubMed  Google Scholar 

  • Sailer A, Molnar GF, Cunic DI, Chen R (2002) Effects of peripheral sensory input on cortical inhibition in humans. J Physiol 544: 617–629

    Article  PubMed  CAS  Google Scholar 

  • Terao Y, Ugawa Y, Uesaka Y, Hanajima R et al. (1995) Input-output organization in the hand area of the human motor cortex. Electroencephalogr Clin Neurophysiol 97: 375–381

    Article  PubMed  CAS  Google Scholar 

  • Tokimura H, Di Lazzaro V, Tokimura Y, Oliviero A et al. (2000) Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol 523: 503–513 Dieser Artikel erarbeitete die wichtigsten, physiologischen Prinzipien der afferenten sensomotorischen Hemmung kurzer Latenz. Insbesondere wurde gezeigt, dass diese Hemmung im Wesentlichen ein kortikal vermittelter Mechanismus ist.

    Article  PubMed  CAS  Google Scholar 

  • Trompetto C, Buccolieri A, Abbruzzese G (2001) Intracortical inhibitory circuits and sensory input: a study with transcranial magnetic stimulation in humans. Neurosci Lett 297: 17–20

    Article  PubMed  CAS  Google Scholar 

  • Voller B, St Clair Gibson A, Lomarev M, Kanchana S et al. (2005) Long-latency afferent inhibition during selective finger movement. J Neurophysiol 94: 1115–1119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Pötter, M., Siebner, H.R. (2007). Afferente Konditionierung. In: Siebner, H.R., Ziemann, U. (eds) Das TMS-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71905-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71905-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71904-5

  • Online ISBN: 978-3-540-71905-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics