Skip to main content

Tropical Forests. I. Physiognomy and Functional Structure

  • Chapter
  • 1710 Accesses

Abstract

In the tropics seasonality is determined by rainfall. Seasonality of rainfall is absent over only a very narrow zone 1◦ north and south of the equator (Fig. 3.1). Seasonality of rainfall is the most important factor determining the definition of different types of tropical forest. Hence, a detailed separation of types of tropical forests is obtained when they are related to Klimadiagramm graphs (after Walter 1973, see Sect. 2.2.1, Box 2.1), which depict the duration and severity of dry and wet seasons. Humid and arid climates, respectively, are defined by the difference between rainfall and evaporation. Positive values indicate a humid climate, where precipitation is larger than evaporation, and negative values mark arid climates with evaporation larger than precipitation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aidar MPM, Schmidt S, Moss G, Stewart GR, Joly CA (2003) Nitrogen use strategies of neotropical rainforest trees in threatened Atlantic Forest. Plant Cell Environ 26:389–399

    Google Scholar 

  • Beard JS (1946) The natural vegetation of Trinidad. Oxford Forestry Memoirs, No 20. Oxford University Press, Oxford

    Google Scholar 

  • Beard JS (1955) The classification of tropical American vegetation types. Ecology 36:89–100

    Google Scholar 

  • Beck E, Lüttge U (1990) Streß bei Pflanzen. Biol Unserer Zeit 20:237–244

    CAS  Google Scholar 

  • Bell G, Lechowicz MJ, Appenzeller A, Chandler M, DeBlois E, Jackson L, Mackenzie B, Preziosi R, Schallenberg M, Tinker N (1993) The spatial structure of the physical environment. Oecologia 96:114–121

    Google Scholar 

  • Béreau M, Louisanna E, Garbaye J (2004) Mycorrhizal symbiosis in the tropical rainforest of French Guiana and its potential contribution to tree regeneration and growth. In: Gourlet-Fleury S, Guehl J-M, Laroussinie O (eds) Ecology and management of a neotropical rainforest. Elsevier, Amsterdam, pp 114–119

    Google Scholar 

  • Bongers F, Meer PJ van der, Théry M (2001) Scales of ambient light variation. In: Bongers F, Charles-Dominique P, Forget P-M, Théry M (eds) Nouragues. Dynamics and plant animal interactions in a neotropical rainforest. Kluwer Academic Publishers, Dordrecht, pp 19–29

    Google Scholar 

  • Booth RE, Grime JP (2003) Effects of genetic impoverishment on plant community diversity. J Ecol 91:721–730

    Google Scholar 

  • Booy G, Hendriks RJJ, Smulders MJM, Groenendael JM van, Vosman B (2000) Genetic diversity and the survival of populations. Plant Biol 2:379–395

    Google Scholar 

  • Brearley FQ, Press MC, Scholes JD (2003) Nutrients obtained from leaf litter can improve the growth of dipterocarp seedlings. New Phytol 160:101–110

    CAS  Google Scholar 

  • Buchmann N, Kao W-Y, Ehleringer JR (1996) Carbon dioxide concentrations within forest canopies – variation with time, stand culture, and vegetation type. Global Change Biol 2:421–432

    Google Scholar 

  • Buchmann N, Bonal D, Barigah TS, Guehl J-M, Ehleringer JR (2004) Insights into the carbon dynamics of tropical primary rainforests using stable carbon isotope analyses. In: Gourlet-Fleury S, Guehl J-M, Laroussinie O (eds) Ecology and management of a neotropical rainforest. Elsevier, Amsterdam, pp 95–113

    Google Scholar 

  • Campbell BD, Grime JP, Mackey JML, Jalili A (1991) The quest for a mechanistic understanding of resource competition in plant communities: the role of experiments. Funct Ecol 5:241–253

    Google Scholar 

  • Chazdon RL, Fetcher N (1984) Light environments of tropical rainforests. In: Medina E, Mooney HA, Vázquez-Yanes C (eds) Physiological ecology of plants in the wet tropics. Dr W Junk, The Hague, pp 27–50

    Google Scholar 

  • Choong MF, Lucas PW, Ong JSY, Pereira B, Tan HTW, Turner IM (1992) Leaf fracture toughness and sclerophylly:their correlations and ecological implications. New Phytol 121:597–610

    Google Scholar 

  • Chuyong GB, Newbery DM, Songwe NC (2000) Litter nutrients and retranslocation in a central African rain forest dominated by ectomycorrhizal trees. New Phytol 148:493–510

    CAS  Google Scholar 

  • Clements FE (1936) Nature and structure of the climax. J Ecol 24:252–284

    Google Scholar 

  • Crook MJ, Ennos AR, Banks JR (1997) The function of buttress roots: a comparative study of the anchorage systems of buttressed (Aglaia and Nephelium ramboutan species) and non-buttressed (Mallotus wraja) tropical trees. J Exp Bot 48:1703–1716

    CAS  Google Scholar 

  • Dalling JW, Hubbell SP, Silvera K (1998) Seed dispersal, seedling establishment and gap partitioning among tropical pioneer trees. J Ecol 86:674–689

    Google Scholar 

  • Davidson DW, Epstein WW (1989) Epiphytic associations with ants. In: Lüttge U (ed) Vascular plants as epiphytes. Evolution and ecophysiology. Ecological Studies, vol 76. Springer, Berlin Heidelberg New York, pp 200–233

    Google Scholar 

  • Davies SJ, Palmiotto PA, Ashton PS, Lee HS, Lafrankie JV (1998) Comparative ecology of 11 sympatric species of Macaranga in Borneo: tree distribution in relation to horizontal and vertical resource heterogeneity. J Ecol 86:662–673

    Google Scholar 

  • Denslow JS, Ellison AM, Sanford RE (1998) Treefall gap size effects on above- and below-ground processes in a tropical wet forest. J Ecol 86:597–609

    Google Scholar 

  • Doley D, Yates DJ, Unwin GL (1987) Photosynthesis in an Australian rainforest tree, Argyrodendron peralatum, during the rapid development and relief of water deficits in the dry season. Oecologia 74:441–449

    Google Scholar 

  • Domenach A-M, Roggy J-C, Molino J-F, Marechal J, Sabatier D, Prévost M-F (2004) Diversity of the leguminous tree Rhizobium associations and role of the nitrogen fixation on the stability of the rainforest in French Guiana. In: Gouret-Fleury S, Guehl JM, Laroussinie O (eds) Ecology and management of a neotropical rainforest. Elsevier, Amsterdam, pp 120–143

    Google Scholar 

  • Duarte Rocha CF, Godoy Bergallo H (1992) Bigger ant colonies reduce herbivory and herbivore residence time on leaves of an ant-plant: Azteca muelleri vs. Coelomera ruficornis on Cecropia pachystachya. Oecologia 91:249–252

    Google Scholar 

  • Esteves FA (1998) Considerations on the ecology of wetlands, with emphasis on Brazilian floodplain ecosystems. In: Scarano FR, Franco AC (eds) Ecophysiological strategies of xerophytic and amphibious plants in the neotropics. Oecologia Brasiliensis, vol IV, Universidade Federal do Rio de Janeiro, Rio de Janeiro, pp 111–135

    Google Scholar 

  • Fernandez MD, Pieters A, Donoso C, Herrera C, Tezara W, Rengifo E, Herrera A (1999) Seasonal changes in photosynthesis of trees in the flooded forest of the Mapire river. Tree Physiol 19:79–85

    PubMed  Google Scholar 

  • Fischer RC, Wanek W, Richter A, Mayer V (2003) Do ants feed plants? A 15N labelling study of nitrogen fluxes from ants to plants in the mutualism of Pheidole and Piper. J. Ecol 91:126–134

    Google Scholar 

  • Fredeen AL, Field CB (1992) Ammonium and nitrate uptake in gap generalist and understory species of the genus Piper. Oecologia 92:207–214

    Google Scholar 

  • Fredeen AL, Griffin K, Field CB (1991) Effects of light quantity and quality and soil nitrogen status on nitrate reductase activity in rainforest species of the genus Piper. Oecologia 86:441–446

    Google Scholar 

  • Gehrig H, Gaussmann O, Marx H, Schwarzott D, Kluge M (2001) Molecular phylogeny of the genus Kalanchoë (Crassulaceae) inferred from nucleotide sequences of the IST-1 and IST-2 regions. Plant Sci 160:827–835

    PubMed  CAS  Google Scholar 

  • Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microsoms. Nature 328:420–422

    Google Scholar 

  • Guehl J-M, Bonal D, Ferhi A, Barigah TS, Farquhar G, Granier A (2004) Community-level diversity of carbon-water relations in rainforest trees. In: Gourlet-Fleury S, Guehl J-M, Laroussinie O (eds) Ecology and management of a neotropical rainforest. Elsevier-Amsterdam, pp 75–94

    Google Scholar 

  • Herz H, Beyschlag W, Hölldobler B (2006) Herbivory rate of leaf-cutting ants in a tropical moist forest in Panama at the population and ecosystem scales. Biotropica (in press)

    Google Scholar 

  • Jacobs M (1988) The tropical rain forest. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Junk WJ (1997) Distribution and size of neotropical floodplains. In: Junk WJ (ed) The Central Amazon floodplain. Ecological Studies vol 126. Springer, Berlin Heidelberg New York, pp 12–16

    Google Scholar 

  • Junk WJ, Furch K (1985) The physical and chemical properties of Amazonian waters and their relationships with biota. In: Prance GT, Lovejoy TE (eds) Amazonia. Pergamon, Oxford, p 7

    Google Scholar 

  • Kitayama K, Aiba S-I (2002) Ecosystem structure and productivity of tropical rainforests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. J Ecol 90:37–51

    Google Scholar 

  • Kleunen M van, Fischer M (2005) Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytol 166:49–60

    Google Scholar 

  • Kratochwil A (1998) Biodiversity in ecosystems. Atti dei Convegni Lincei 145:23–62

    Google Scholar 

  • Kursar TA, Coley PD (1992a) Delayed development of the photosynthetic apparatus in tropical rain forest species. Funct Ecol 6:411–422

    Google Scholar 

  • Kursar TA, Coley PD (1992b) The consequences of delayed greening during leaf development for light absorption and light use efficiency. Plant Cell Environ 15:901–909

    Google Scholar 

  • Larcher W (1987) Streß bei Pflanzen. Naturwissenschaften 74:158–167

    CAS  Google Scholar 

  • Levin SA, Muller-Landau HC (2001) The emergence of diversity in plant communities. CR Acad Sci Paris Sci de la Vie 323:129–139

    Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses, vol I. Academic Press, New York

    Google Scholar 

  • Lobo PC, Joly CA (1998) Tolerance to hypoxia and anoxia in neotropical tree species. In: Scarano FR, Franco AC (eds) Ecophysiological strategies of xerophytic and amphibious plants in the neotropics. Oecologia Brasiliensis, vol IV, Universidade Federal do Rio de Janeiro, Rio de Janeiro, pp 111–135

    Google Scholar 

  • Löscher HW, Oberbauer SF, Gholz HL, Clark DB (2003) Environmental controls on net ecosystem-level carbon exchange and productivity in a Central American tropical wet forest. Global Change Biol 9:396–412

    Google Scholar 

  • Lüttge U (1995) Ecophysiological basis of the diversity of tropical plants: the example of the genus Clusia. In: Heinen HD, San José JJ, Caballero-Arias H (eds) Nature and human ecology in the neotropics. Sci Guaianae 5:23–26

    Google Scholar 

  • Lüttge U (2005) Genotypes-phenotypes-ecotypes: relations to Crassulacean acid metabolism. Nova Acta Leopoldina NF 92/342, pp 177–193

    Google Scholar 

  • Lüttge U (2007) Physiological ecology. In: Lüttge U (ed) Clusia: a woody neotropical genus of remarkable plasticity and diversity. Ecol Studies vol. 194. Springer, Berlin Heidelberg NewYork, pp 187–234

    Google Scholar 

  • Manrubia SC, Solé RV (1996) Self-organized criticality in rainforest dynamics. Chaos, Solitons and Fractals 7:523–541

    Google Scholar 

  • Massey FP, Massey K, Press MC, Hartley SE (2006) Neighbourhood composition determines growth, architecture and herbivory in tropical rain forest tree seedlings. J Ecol 94:646–655

    Google Scholar 

  • Mattheck C (1992) Design in der Natur. Der Baum als Lehrmeister. Rombach Freiburg i. Breisgau

    Google Scholar 

  • Medina E (1983) Adaptations of tropical trees to moisture stress. In: Golley FB (ed) Tropical rain forest ecosystems, A. Structure and function. Elsevier, Amsterdam, pp 225–237

    Google Scholar 

  • Medina E (1986) Forests, savannas and montane tropical environment. In: Baker NR, Long SP (eds) Photosynthesis in contrasting environments. Elsevier Amsterdam, pp 139–171

    Google Scholar 

  • Medina E, Cuevas E (1989) Patterns of nutrient accumulation and release in Amazonian forests of the upper Rio Negro basin. In: Proctor J (ed) Mineral nutrients in tropical forest and savanna ecosystems. Blackwell Oxford, pp 217–240

    Google Scholar 

  • Medina E, Cuevas E (1994) Mineral nutrition:humid tropical forests. Prog Bot 55:115–129

    Google Scholar 

  • Medina E, García V, Cuevas E (1990) Sclerophylly and oligotrophic environments: relationships between leaf structure, mineral nutrient content, and drought resistance in tropical rain forests of the upper Rio Negro region. Biotropica 22:51–64

    Google Scholar 

  • Meer PJ van der, Bongers F (1996) Patterns of tree-fall and branch-fall in a tropical rain forest in French Guiana. J Ecol 84:19–29

    Google Scholar 

  • Miyazawa S-I, Terashima I (2001) Slow development of leaf photosynthesis in an evergreen broad-leaved tree, Castanopsis sieboldii: relationships between leaf anatomical characteristics and photosynthesis and photosynthetic rate. Plant Cell Environ 24:279–291

    CAS  Google Scholar 

  • Morawetz W, Wallnöfer B (1992) Die Ameisenpflanzen entlang eines Transekts durch das Sira-Gebirge (Peruanisches Amazonien) und ihre ökologische Stellung im Regenwald. Dtsch Ges Tropenökologie, Jahrestagung Bonn

    Google Scholar 

  • Morawetz W, Henzl M, Wallnöfer B (1992) Tree killing by herbicide producing ants for the establishment of pure Tococa occidentalis populations in the Peruvian Amazon. Biodivers Conserv 1:19–33

    Google Scholar 

  • Murali KS, Sukumar R (1993) Leaf flushing phenology and herbivory in a tropical dry deciduous forest, southern India. Oecologia 94:114–119

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    PubMed  CAS  Google Scholar 

  • Newell EA, McDonald EP, Strain BR, Denslow JS (1993) Photosynthetic responses of Miconia species to canopy openings in a lowland tropical rainforest. Oecologia 94:49–56

    Google Scholar 

  • Nickol MG (1992) Untersuchungen der Myrmekodomatien von Tococa guianensis (Melastomataceae). Dtsch Ges Tropenökologie, Jahrestagung Bonn

    Google Scholar 

  • Noss RF (1983) A regional landscape approach to maintain diversity. BioScience 33:700–706

    Google Scholar 

  • Orians GH (1982) The influence of tree-fall in tropical forest on tree species richness. Trop Ecol 23:255–279

    Google Scholar 

  • Osada N, Takeda H, Furukawa A, Awang M (2001) Leaf dynamics and maintenance of tree crowns in a Malaysian rain forest stand. J Ecol 89:774–782

    Google Scholar 

  • Palmiotto PA, Davies SJ, Vogt KA, Ashton MS, Vogt DJ, Ashton PS (2004) Soil-related habitat specialization in dipterocarp rain forest tree species in Borneo. J Ecol 92:609–623

    Google Scholar 

  • Phillips OL, Vargas PN, Monteagudo AL, Cruz AP, Zans MEC, Sánchez WG, Yli-Halla M, Rose S (2003) Habitat association among Amazonian tree species: a landscape-scale approach. J Ecol 91:757–775

    Google Scholar 

  • Piedade MTF, Long SP, Junk WJ (1994) Leaf and canopy photosynthetic CO2 uptake of a stand of Echinochloa polystachia on the Central Amazon floodplain. Are the high potential rates associated with the C4 syndrome realized under the near-optimal conditions provided by this exceptional natural habitat? Oecologia 97:193–201

    Google Scholar 

  • Pimenta JA, Bianchini E, Medri ME (1998) Adaptations to flooding by tropical trees: morphological and anatomical modifications. In: Scarano FR, Franco AC (eds) Ecophysiological strategies of xerophytic and amphibious plants in the neotropics. Oecologia Brasiliensis, vol IV, Universidade Federal do Rio de Janeiro, Rio de Janeiro, pp 157–176

    Google Scholar 

  • Pons TL, Perreijn K, Kessel C van, Werger MJA (2007) Symbiotic nitrogen fixation in a tropical rainforest: 15N natural abundance measurements supported by experimental isotopic enrichment. New Phytol 173:154–167

    PubMed  CAS  Google Scholar 

  • Reich PB, Uhl C, Walters MB, Ellsworth DS (1991) Leaf life span as a determinant of leaf structure and function among 23 amazonian tree species. Oecologia 86:16–24

    Google Scholar 

  • Reichholf JH (1994) Biodiversity. Why are there so many different species? Universitas 1994/1:42–51

    Google Scholar 

  • Remmert H (1985) Was geschieht im Klimax-Stadium? Ökologisches Gleichgewicht durch Mosaik aus desynchronen Zyklen. Naturwissenschaften 72:505–512

    Google Scholar 

  • Remmert H (1991) The mosaic cycle of ecosystems. Ecological Studies, vol 85. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Richards PW (1996) The tropical rain forest. An ecological study, 2nd edn. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Santiago LS, Mulkey SS (2005) Leaf productivity along a precipitation gradient in lowland Panama: patterns from leaf to ecosystem Trees 19:349–356

    Google Scholar 

  • Sarmiento G (1984) The ecology of neotropical savannas. Harvard University Press, Cambridge

    Google Scholar 

  • Schlindwein CCD, Fett-Neto AG, Dillenburg LR (2006) Chemical and mechanical changes during leaf expansion of four woody species of a dry restinga woodland. Plant Biol 8:430–438

    PubMed  CAS  Google Scholar 

  • Schuster P (1998) Evolution in molekularer Auflösung. Ber u Abh Berlin-Brandenb Akad Wiss 6:187–215

    Google Scholar 

  • Selye H (1973) The evolution of the stress concept. Am Sci 61:693–699

    Google Scholar 

  • Silver WL (1994) Is nutrient availability related to plant nutrient use in humid tropical forests? Oecologia 98:336–343

    Google Scholar 

  • Simone O de, Haase K, Müller E, Junk WJ, Gonsior G, Schmidt W (2002) Funct Plant Biol 29:1025–1035

    Google Scholar 

  • Simone O de, Haase K, Müller E, Junk WJ, Hartmann K, Schreiber L, Schmidt W (2003a) Apoplasmic barriers and oxygen transport properties by hypodermal cell walls in roots from four Amazonian tree species. Plant Physiol 132:206–217

    Google Scholar 

  • Simone O de, Müller E, Junk WJ, Richau K, Schmidt W (2003b) Iron distribution in three central Amazon tree species from white water-inundation areas (várza) subjected to different iron regimes. Trees 17:535–541

    Google Scholar 

  • Sobrado MA (1991) Cost-benefit relationships in deciduous and evergreen leaves of tropical dry forest species. Func Ecol 5:608–616

    Google Scholar 

  • Sobrado MA (1995) Seasonal differences in nitrogen storage in deciduous and evergreen species of a tropical dry forest. Biol Plant 37:291–295

    Google Scholar 

  • Solbrig OT (1994) Plant traits and adaptive strategies: their roles in ecosystem function. In: Schulze E-D, Mooney HA (eds) Biodiversity and ecosystem function. Ecological Studies 99. Springer, Berlin Heidelberg New York, pp 97–116

    Google Scholar 

  • Solé RV, Manrubia SC (1995a) Self-similarity in rain forests: evidence for a critical state. Phys Rev E 51:6250–6253

    Google Scholar 

  • Solé RV, Manrubia SC (1995b) Are rainforests self-organized in a critical state? J Theor Biol 173:31–40

    Google Scholar 

  • Solé RV, Manrubia SC, Luque B (1994) Multifractals in rainforest ecosystems: modelling and simulations. In: Novak NM (ed) Fractals in the natural and applied sciences. Elsevier, Amsterdam, pp 397–407

    Google Scholar 

  • Souza Moreira FM de, Silva MF da, Faria SM de (1992) Occurrence of nodulation in legume species in the Amazon region of Brazil. New Phytol 121:563–570

    Google Scholar 

  • Stewart GR, Hegarty EE, Specht RL (1988) Inorganic nitrogen assimilation in plants of Australian rainforest communities. Physiol Plant 74:26–33

    CAS  Google Scholar 

  • Stewart GR, Gracia CA, Hegarty EE, Specht RL (1990) Nitrate reductase activity and chlorophyll content in sun leaves of subtropical Australian cloud-forest (rainforest) and open-forest communities. Oecologia 82:544–551

    Google Scholar 

  • Stewart GR, Joly CA, Smirnoff N (1992) Partitioning of inorganic nitrogen assimilation between the roots and shoots of cerrado and forest trees of contrasting plant communities of South East Brasil. Oecologia 91:511–517

    Google Scholar 

  • Sultan SE, Bazzaz FA (1993) Phenotypic plasticity in Polygonum persicaria. I. Diversity and uniformity in genotypic norms of reaction to light. Evolution 47:1009–1031

    Google Scholar 

  • Talbott LD, Rahveh E, Zeiger E (2003) Relative humidity is a key factor in the acclimation of the stomatal response to CO2. J Exp Bot 54:2141–2147

    PubMed  CAS  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton Univ. Press, Princeton

    Google Scholar 

  • Torquebiau EF (1988) Phtosynthetically active radiation environment, patch dynamics and architecture in a tropical rainforest in Sumatra. Aust J Plant Physiol 15:327–342

    Google Scholar 

  • Valencia R, Foster RB, Villa G, Condit R, Svenning JC, Hernández C, Romoleroux K, Losos E, Magård E, Balsev H (2004) Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. J Ecol 92:214–229

    Google Scholar 

  • Vareschi V (1980) Vegetationsökologie der Tropen. Ulmer, Stuttgart

    Google Scholar 

  • Walter H (1973) Vegetationszonen und Klima. Ulmer, Stuttgart

    Google Scholar 

  • Walter H, Breckle S-W (1984) Ökologie der Erde, vol 2. Spezielle Ökologie der tropischen und subtropischen Zonen. G Fischer, Stuttgart

    Google Scholar 

  • Watt AS (1947) Pattern and process in the plant community. J Ecol 35:1–22

    Google Scholar 

  • Webber BL, Abaloz BA, Woodrow IE (2006) Myrmecophilic food body production in the understorey tree, Ryparosa kurrangii (Achariaceae), a rare Australian rain forest taxon. New Phytol 173:250–263

    Google Scholar 

  • West-Eberhard MJ (1986) Alternative adaptations, speciation, and phylogeny (a review). Proc Natl Acad Sci USA 83:1388–1392

    PubMed  Google Scholar 

  • West-Eberhard MJ (1989) Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst 20:249–278

    Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Whitmore TC (1990) An introduction to tropical rain forests. Oxford University Press, Oxford

    Google Scholar 

  • Whittaker RH (1975) Communities and ecosystems, 2nd edn. Macmillan, New York

    Google Scholar 

  • Wirth R, Herz H, Ryel RJ, Beyschlag W, Hölldobler B (2003) Herbivory of leaf-cutting ants. A case study on Atta colombica in the tropical rainforest of Panamá. Ecological Studies, vol. 164. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Tropical Forests. I. Physiognomy and Functional Structure. In: Physiological Ecology of Tropical Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71793-5_3

Download citation

Publish with us

Policies and ethics