Skip to main content

Modeling Genetic Networks: Comparison of Static and Dynamic Models

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4447)

Abstract

Biomedical research has been revolutionized by high-throughput techniques and the enormous amount of biological data they are able to generate. The interest shown over network models and systems biology is rapidly raising. Genetic networks arise as an essential task to mine these data since they explain the function of genes in terms of how they influence other genes. Many modeling approaches have been proposed for building genetic networks up. However, it is not clear what the advantages and disadvantages of each model are. There are several ways to discriminate network building models, being one of the most important whether the data being mined presents a static or dynamic fashion. In this work we compare static and dynamic models over a problem related to the inflammation and the host response to injury. We show how both models provide complementary information and cross-validate the obtained results.

Keywords

  • Boolean Function
  • Genetic Network
  • Boolean Network
  • Boolean Model
  • KEGG Database

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000)

    CrossRef  Google Scholar 

  • Brown, P., Botstein, D.: Exploring the new world of the genome with DNA microarrays. Nature Genet. 21(Suppl.), 33–37 (1999)

    CrossRef  Google Scholar 

  • Calvano, S.E., Xiao, W., Richards, D.R., Feliciano, R.M., Baker, H.V., Cho, R.J., Chen, R.O., Brownstein, B.H., Cobb, J.P., Tschoeke, S.K., Miller-Graziano, C., Moldawer, L.L., Mindrinos, M.N., Davis, R.W., Tompkins, R.G., Lowry, S.F.: The Inflammation and Host Response to Injury Large Scale Collaborative Research Program. A Network-Based Analy-sis of Systemic Inflammation in Humans. Nature, 13:437(7061):1032-7 (2005)

    Google Scholar 

  • Davies, D.L., Bouldin, W.: A cluster separation measure. IEEE PAMI 1, 224–227 (1979)

    Google Scholar 

  • D’haeseleer, P., Liang, S., Somogyi, R.: Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16(8), 707–726 (2000)

    CrossRef  Google Scholar 

  • D’Onia, D., Tam, L., Cobb, J.P., Zwir, I.: A hierarchical reverse-forward methodology for learning complex genetic networks. In: Proceedings of the 3rd International Conference on Systems Biology (ICSB), Stockholm, Sweden

    Google Scholar 

  • Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley & Sons, New York (1973)

    MATH  Google Scholar 

  • Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  • Efron, B.: Local false discovery rates. Preprint, Dept. of Statistics, Stanford University (2005)

    Google Scholar 

  • Dutilh, B.: Analysis of data from microarray experiments, the state of the art in gene network reconstruction. Report Binf, 11.01, Bioinformatics, Utrecht University (1999)

    Google Scholar 

  • Gregory, W.: Inferring network interactions within a cell. Bioinformatics 6, 380–389 (2005)

    CrossRef  Google Scholar 

  • Guiller, A., Bellido, A., Coutelle, A., Madec, L.: Spatial genetic pattern in the land Helix aspersa inferred from a ’centre-based clustering’ procedure. Genet Res. 88(1), 27–44 (2006)

    CrossRef  Google Scholar 

  • Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., Hattori, M.: The KEGG resource for deciphering the genome. Nucleic Acids Res. 1(32)(Database issues), D277–280 (2004)

    CrossRef  Google Scholar 

  • Karp, P.D., Ouzounis, C.A., Moore-Kochlacs, C., Goldovsky, L., Kaipa, P., Ahren, D., Tsoka, S., Darzentas, N., Kunin, V., Lopez-Bigas, N.: Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Research 19, 6083–6089 (2005)

    CrossRef  Google Scholar 

  • Kishino, H., Waddell, P.J.: Correspondence analysis of genes and tissue types and finding genetic links from microarray data. Genome Informatics 11, 83–95 (2000)

    Google Scholar 

  • McAdams, H.H., Arkin, A.: Simulation Of Prokaryotic Genetic Circuits. Ann. Rev. Biophys. Biom. Struct. 27, 199–224 (1998)

    CrossRef  Google Scholar 

  • Opgen-Rhein, R., Strimmer, K.: Inferring gene dependency networks from genomic longitudinal data: a functional data approach. REVSTAT 4, 53–65 (2006)

    MathSciNet  Google Scholar 

  • Rice, J.J., Stolovitzky, G.: Making the most of it: Pathway reconstruction and integrative simulation using the data at hand. Biosilico 2(2), 70–77 (2004)

    Google Scholar 

  • Romero-Záliz, R., Rubio-Escudero, C., Cordón, O., Harare, O., del Val, C., Zwir, I.: Mining Structural Databases: An Evolutionary Multi-Objective Conceptual Clustering Methodology. In: Proceedings of the 4th European Workshop on Evolutionary Computation and Machine Learning in Bioinformatics, Budapest, Hungary (2006)

    Google Scholar 

  • Rubio-Escudero, C., Romero-Záliz, R., Cordón, O., Harari, O., del Val, C., Zwir, I.: Optimal Selection of Microarray Analysis Methods using a Conceptual Clustering Algorithm. In: Proceedings of the 4th European Workshop on Evolutionary Computation and Machine Learning in Bioinformatics, Budapest, Hungary (2005)

    Google Scholar 

  • Schäfer, J., Strimmer, K.: An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21, 754–764 (2005)

    CrossRef  Google Scholar 

  • Silvescu, A., Honavar, V.: Temporal Boolean Network Models of Genetic Networks and Their Inference from Gene Expression Time Series. Complex Systems 13(1), 54–75 (2001)

    MathSciNet  Google Scholar 

  • Simon, I., Siegfried, Z., Ernst, J., Bar, Z.: Combined static and dynamic analysis for determining the quality of time-series expression profiles. Nat. Biotechnol. 23(12), 1503–1508 (2005)

    CrossRef  Google Scholar 

  • Velarde, C.: Master Thesis in Comp. Sci., University of Buenos Aires, Argentina (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Elena Marchiori Jason H. Moore Jagath C. Rajapakse

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Rubio-Escudero, C., Harari, O., Cordón, O., Zwir, I. (2007). Modeling Genetic Networks: Comparison of Static and Dynamic Models. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds) Evolutionary Computation,Machine Learning and Data Mining in Bioinformatics. EvoBIO 2007. Lecture Notes in Computer Science, vol 4447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71783-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71783-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71782-9

  • Online ISBN: 978-3-540-71783-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics