Skip to main content

One-Versus-One and One-Versus-All Multiclass SVM-RFE for Gene Selection in Cancer Classification

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4447)

Abstract

We propose a feature selection method for multiclass classification. The proposed method selects features in backward elimination and computes feature ranking scores at each step from analysis of weight vectors of multiple two-class linear Support Vector Machine classifiers from one-versus-one or one-versus-all decomposition of a multi-class classification problem. We evaluated the proposed method on three gene expression datasets for multiclass cancer classification. For comparison, one filtering feature selection method was included in the numerical study. The study demonstrates the effectiveness of the proposed method in selecting a compact set of genes to ensure a good classification accuracy.

Keywords

  • Support Vector Machine
  • Feature Selection
  • Feature Subset
  • Feature Selection Method
  • Ranking Score

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vapnik, V.: Statistical Learning Theory. Wiley Interscience, New York (1998)

    MATH  Google Scholar 

  2. Boser, B.E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Computational Learing Theory, pp. 144–152 (1992)

    Google Scholar 

  3. Friedman, J.H.: Another approach to polychotomous classification. Technical report, Department of Statistics, Stanford University (1996)

    Google Scholar 

  4. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46(1-3), 389–422 (2002)

    CrossRef  MATH  Google Scholar 

  5. Hsu, C.W., Lin, C.J.: A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks 13, 415–425 (2002)

    CrossRef  Google Scholar 

  6. Crammer, K., Singer, Y.: On the learnability and design of output codes for multiclass problems. In: Computational Learing Theory, pp. 35–46 (2000)

    Google Scholar 

  7. Weston, J., Watkins, C.: Support vector machines for multiclass pattern recognition. In: Proceedings of the Seventh European Symposium On Artificial Neural Networks (1999)

    Google Scholar 

  8. Duan, K.B., Keerthi, S.S.: Which is the best multiclass SVM method? An empirical study. In: Multiple Classifier Systems, pp. 278–285 (2005)

    Google Scholar 

  9. Duan, K., Keerthi, S.S., Chu, W., Shevade, S.K., Poo, A.N.: Multi-category classification by soft-max combination of binary classifiers. In: Multiple Classifier Systems, pp. 125–134 (2003)

    Google Scholar 

  10. Kreel, U.H.G.: Pairwise classification and support vector machines. In: Scholkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods: Support Vector Learning, pp. 255–268. MIT Press, Cambridge (2002)

    Google Scholar 

  11. Platt, J., Cristianini, N., Shawe-Taylor, J.: Large margin DAGs for multiclass classification (2000)

    Google Scholar 

  12. Hastie, T., Tibshirani, R.: Classification by pairwise coupling. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Processing Systems, vol. 10, MIT Press, Cambridge (1998)

    Google Scholar 

  13. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. of Artificial Intelligence Research 2, 263–286 (1995)

    MATH  Google Scholar 

  14. Rajapakse, J.C., Duan, K.B., Yeo, W.K.: Proteomic cancer classification with mass spectrometry data. American Journal of PharmacoGenomics 5(5), 281–292 (2005)

    CrossRef  Google Scholar 

  15. Duan, K.B., Rajapakse, J.C.: Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE Trans. Nanobioscience 4(3), 228–234 (2005)

    CrossRef  Google Scholar 

  16. Rakotomamonjy, A.: Variable selection using SVM-based criteria. Journal of Machine Learning Research (Special Issue on Variable Selection) 3, 1357–1370 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. Li, G., Yang, J., Liu, G., Xue, L.: Feature selection for multi-class problems using support vector machines. In: Zhang, C., W. Guesgen, H., Yeap, W.-K. (eds.) PRICAI 2004. LNCS (LNAI), vol. 3157, pp. 292–300. Springer, Heidelberg (2004)

    Google Scholar 

  18. Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 97(457), 77–87 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. Yeoh, E.J., Ross, M.E., Shurtleff, S.A. et al.: Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1, 133–143 (2002)

    CrossRef  Google Scholar 

  20. Armstrong, S.A., Staunton, J.E., Silverman, L.B. et al.: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature Genetics 30, 41–47 (2002)

    CrossRef  Google Scholar 

  21. Khan, J., Wei, J.S., Ringn, M., et al.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine 7(6), 673–679 (2001)

    CrossRef  Google Scholar 

  22. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. Journal of Maching Learning Research 5, 101–141 (2004)

    MathSciNet  Google Scholar 

  23. Scholkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Elena Marchiori Jason H. Moore Jagath C. Rajapakse

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Duan, KB., Rajapakse, J.C., Nguyen, M.N. (2007). One-Versus-One and One-Versus-All Multiclass SVM-RFE for Gene Selection in Cancer Classification. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds) Evolutionary Computation,Machine Learning and Data Mining in Bioinformatics. EvoBIO 2007. Lecture Notes in Computer Science, vol 4447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71783-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71783-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71782-9

  • Online ISBN: 978-3-540-71783-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics