Skip to main content

Robust Peak Detection and Alignment of nanoLC-FT Mass Spectrometry Data

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4447)

Abstract

In liquid chromatography-mass spectrometry (LC-MS) based expression proteomics, samples from different groups are analyzed comparatively in order to detect differences that can possibly be caused by the disease under study (potential biomarker detection). To this end, advanced computational techniques are needed. Peak alignment and detection are two key steps in the analysis process of LC-MS datasets. In this paper we propose an algorithm for LC-MS peak detection and alignment. The goal of the algorithm is to group together peaks generated by the same peptide but detected in different samples. It employs clustering with a new weighted similarity measure and automatic selection of the number of clusters. Moreover, it supports parallelization by acting on blocks. Finally, it allows incorporation of available domain knowledge for constraining and refining the search for aligned peaks. Application of the algorithm to a LC-MS dataset generated by a spike-in experiment substantiates the effectiveness of the proposed technique.

Keywords

  • Peak Detection
  • Isotopic Peak
  • Peak Alignment
  • True Peak
  • Correlation Optimise Warping

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebersold, R., Mann, M.: Mass spectrometry-based proteomics. Nature 422(6928), 198–207 (2003)

    CrossRef  Google Scholar 

  2. America, A.H., et al.: Alignment and statistical difference analysis of complex peptide data sets generated by multidimensional lc-ms. Proteomics 6(2), 641–653 (2006)

    CrossRef  Google Scholar 

  3. Bellew, M., et al.: A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution lc-ms. Bioinformatics (2006)

    Google Scholar 

  4. Bylund, D., et al.: Chromatographic alignment by warping and dynamic programming as a pre-processing tool for parafac modelling of liquid chromatography-mass spectrometry data. J. Chromatography 961, 237–244 (2002)

    CrossRef  Google Scholar 

  5. Callister, S.J., et al.: Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. J. Proteome Res. 5, 277–286 (2006)

    CrossRef  Google Scholar 

  6. Hu, X., Xu, L.: Investigation on several model selection criteria for determining the number of cluster. Neural Inform. Proces. - Lett. and Reviews 4(1), 1–10 (2004)

    Google Scholar 

  7. Katajamaa, M., et al.: Mzmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics (2006)

    Google Scholar 

  8. Kohli, B.M., et al.: An alternative sampling algorithm for use in liquid chromatography/tandem mass spectrometry experiments. Rapid Commun. Mass Spectrometry 19(5), 589–596 (2005)

    CrossRef  Google Scholar 

  9. Lange, E., et al.: High accuracy peak-picking of proteomics data using wavelet techniques. In: Proc. Pacific Symposium on Biocomputing (PSB-06), pp. 243–254 (2006)

    Google Scholar 

  10. Listgarten, J., Emili, A.: Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry. Mol. Cell. Proteomics 4, 419–434 (2005)

    CrossRef  Google Scholar 

  11. Listgarten, J., et al.: Difference detection in lc-ms data for protein biomarker discovery. Bioinformatics (in print, 2006)

    Google Scholar 

  12. Listgarten, J., et al.: Multiple alignment of continuous time series. In: Advances in Neural Information Processing Systems, NIPS 2004 (2005)

    Google Scholar 

  13. Vest Nielsen, N.-P., et al.: Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping. J. Chromatography 805(1-2), 17–35 (1998)

    CrossRef  Google Scholar 

  14. Radulovic, D., et al.: Informatics platform for global proteomic profiling and biomarker discovery using liquid-chromatography-tandem mass spectrometry. Mol. Cell. Proteomics 3(10), 984–997 (2004)

    CrossRef  Google Scholar 

  15. Smith, C.A., et al.: Xcms: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006)

    CrossRef  Google Scholar 

  16. Tibshirani, R., et al.: Sample classification from protein mass spectrometry, by ’peak probability contrasts’. Bioinformatics 20(17), 3034–3044 (2004)

    CrossRef  Google Scholar 

  17. Wang, P., et al.: A statistical method for chromatographic alignment of lc-ms data. Biostatistics (2006), doi:10.1093/biostatistics/kxl015

    Google Scholar 

  18. Wang, W., et al.: Quantification of proteins and metabolites by mass spectrometry without isotope labeling or spiked standards. Anal. Chem. 75, 4818–4826 (2003)

    CrossRef  Google Scholar 

  19. Yasui, Y., et al.: A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection. Biostatistics 4(3), 449–463 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  20. Zhang, X., et al.: Data pre-processing in liquid chromatography-mass spectrometry-based proteomics. Bioinformatics 21(21), 4054–4059 (2005)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Elena Marchiori Jason H. Moore Jagath C. Rajapakse

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Codrea, M.C., Jiménez, C.R., Piersma, S., Heringa, J., Marchiori, E. (2007). Robust Peak Detection and Alignment of nanoLC-FT Mass Spectrometry Data. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds) Evolutionary Computation,Machine Learning and Data Mining in Bioinformatics. EvoBIO 2007. Lecture Notes in Computer Science, vol 4447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71783-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71783-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71782-9

  • Online ISBN: 978-3-540-71783-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics