Abstract
The Bio-basis Function Neural Network (BBFNN) is a novel neural architecture for peptide classification that makes use of amino acid mutation matrices and a similarity function to model protein peptide data without encoding. This study presents an Evolutionary Bio-basis network (EBBN), an extension to the BBFNN that uses a self adapting Evolution Strategy to optimise a problem specific substitution matrix for much improved model performance. The EBBN is assessed against BBFNN and multi layer perceptron (MLP) models using three datasets covering cleavage sites, epitope sites, and glycoprotein linkage sites. The method exhibits statistically significant improvements in performance for two of these sets.
Keywords
- Functional Site
- Multi Layer Perceptron
- Substitution Matrix
- Mutation Strength
- Positive Peptide
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Thomson, R., Hodgman, T.C., Yang, Z.R., Doyle, A.K.: Characterising proteolytic cleavage site activity using bio-basis function neural networks. Bioinformatics 19, 1741–1747 (2003)
Schwartz, R.M., Orcutt, B.C.: A model of evolutionary change in proteins. matrices for detecting distant relationships. In: Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, vol. 5, pp. 345–358. Nat. Biomed. Res. Found., Washington (1978)
Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. 89, 10915–10919 (1992)
Gonnet, G.H., Cohen, M.A., Benner, S.A.: Exhaustive matching of the entire protein sequence database. Science 256, 1433–1445 (1992)
Yu, Y., Worron, J.C., Altchul, S.F.: The compositional adjustment of amino acid substitution matrices. PNAS 100, 15688–15693 (2003)
Ng, P.C., Henikoff, J.G., Henikoff, S.: PHAT: a transmembrane-specific substitution matrix. Bioinformatics 16, 760–766 (2000)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification and Scene Analysis, 2nd edn. Wiley-Interscience, New York (2002)
Yao, X.: Evolving Artificial Neural Networks. Proc. IEEE 87, 1423–1447 (1999)
Beyer, H., Schwefel, H.: Evolution strategies - A comprehensive introduction. Nat. Comput. 1(1), 3–52 (2002)
Moles, C.G., Mendes, P., Banga, J.R.: Parameter Estimation in Biochemical Pathways: A Comparison of Global Optimization Methods. Genome Research 13, 2467–2474 (2003)
Cai, Y., Chou, K.: Artificial neural network model for predicting HIV protease cleavage sites in protein. Adv. in Eng. Software 29(2), 119–128 (1998)
Chou, K., Zhang, C., Kezdy, F.J., Poorman, R.A.: A Vector Projection Method for Predicting the Specificity of GalNAc-Transferase. Proteins 21, 118–126 (1995)
Zhao, Y., Pinilla, C., Valmori, D., Martin, R., Simon, R.: Application of support vector machines for T-cell epitopes prediction. Bioinformatics 19(15), 1978–1984 (2003)
Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982)
Qian, N., Sejnowski, T.J.: Predicting the secondary structure of globular proteins using neural network models. J. Mol. Biol. 202, 865–884 (1988)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Trudgian, D.C., Yang, Z.R. (2007). Substitution Matrix Optimisation for Peptide Classification. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds) Evolutionary Computation,Machine Learning and Data Mining in Bioinformatics. EvoBIO 2007. Lecture Notes in Computer Science, vol 4447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71783-6_28
Download citation
DOI: https://doi.org/10.1007/978-3-540-71783-6_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71782-9
Online ISBN: 978-3-540-71783-6
eBook Packages: Computer ScienceComputer Science (R0)
