Skip to main content

Substitution Matrix Optimisation for Peptide Classification

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4447)

Abstract

The Bio-basis Function Neural Network (BBFNN) is a novel neural architecture for peptide classification that makes use of amino acid mutation matrices and a similarity function to model protein peptide data without encoding. This study presents an Evolutionary Bio-basis network (EBBN), an extension to the BBFNN that uses a self adapting Evolution Strategy to optimise a problem specific substitution matrix for much improved model performance. The EBBN is assessed against BBFNN and multi layer perceptron (MLP) models using three datasets covering cleavage sites, epitope sites, and glycoprotein linkage sites. The method exhibits statistically significant improvements in performance for two of these sets.

Keywords

  • Functional Site
  • Multi Layer Perceptron
  • Substitution Matrix
  • Mutation Strength
  • Positive Peptide

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thomson, R., Hodgman, T.C., Yang, Z.R., Doyle, A.K.: Characterising proteolytic cleavage site activity using bio-basis function neural networks. Bioinformatics 19, 1741–1747 (2003)

    CrossRef  Google Scholar 

  2. Schwartz, R.M., Orcutt, B.C.: A model of evolutionary change in proteins. matrices for detecting distant relationships. In: Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, vol. 5, pp. 345–358. Nat. Biomed. Res. Found., Washington (1978)

    Google Scholar 

  3. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. 89, 10915–10919 (1992)

    CrossRef  Google Scholar 

  4. Gonnet, G.H., Cohen, M.A., Benner, S.A.: Exhaustive matching of the entire protein sequence database. Science 256, 1433–1445 (1992)

    CrossRef  Google Scholar 

  5. Yu, Y., Worron, J.C., Altchul, S.F.: The compositional adjustment of amino acid substitution matrices. PNAS 100, 15688–15693 (2003)

    CrossRef  Google Scholar 

  6. Ng, P.C., Henikoff, J.G., Henikoff, S.: PHAT: a transmembrane-specific substitution matrix. Bioinformatics 16, 760–766 (2000)

    CrossRef  Google Scholar 

  7. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification and Scene Analysis, 2nd edn. Wiley-Interscience, New York (2002)

    Google Scholar 

  8. Yao, X.: Evolving Artificial Neural Networks. Proc. IEEE 87, 1423–1447 (1999)

    CrossRef  Google Scholar 

  9. Beyer, H., Schwefel, H.: Evolution strategies - A comprehensive introduction. Nat. Comput. 1(1), 3–52 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Moles, C.G., Mendes, P., Banga, J.R.: Parameter Estimation in Biochemical Pathways: A Comparison of Global Optimization Methods. Genome Research 13, 2467–2474 (2003)

    CrossRef  Google Scholar 

  11. Cai, Y., Chou, K.: Artificial neural network model for predicting HIV protease cleavage sites in protein. Adv. in Eng. Software 29(2), 119–128 (1998)

    CrossRef  Google Scholar 

  12. Chou, K., Zhang, C., Kezdy, F.J., Poorman, R.A.: A Vector Projection Method for Predicting the Specificity of GalNAc-Transferase. Proteins 21, 118–126 (1995)

    CrossRef  Google Scholar 

  13. Zhao, Y., Pinilla, C., Valmori, D., Martin, R., Simon, R.: Application of support vector machines for T-cell epitopes prediction. Bioinformatics 19(15), 1978–1984 (2003)

    CrossRef  Google Scholar 

  14. Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982)

    Google Scholar 

  15. Qian, N., Sejnowski, T.J.: Predicting the secondary structure of globular proteins using neural network models. J. Mol. Biol. 202, 865–884 (1988)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Elena Marchiori Jason H. Moore Jagath C. Rajapakse

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Trudgian, D.C., Yang, Z.R. (2007). Substitution Matrix Optimisation for Peptide Classification. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds) Evolutionary Computation,Machine Learning and Data Mining in Bioinformatics. EvoBIO 2007. Lecture Notes in Computer Science, vol 4447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71783-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71783-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71782-9

  • Online ISBN: 978-3-540-71783-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics