Skip to main content

The Role of a Priori Information in the Minimization of Contact Potentials by Means of Estimation of Distribution Algorithms

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4447)

Abstract

Directed search methods and probabilistic approaches have been used as two alternative ways for computational protein design. This paper presents a hybrid methodology that combines features from both approaches. Three estimation of distribution algorithms are applied to the solution of a protein design problem by minimization of contact potentials. The combination of probabilistic models able to represent probabilistic dependencies with the use of information about residues interactions in the protein contact graph is shown to improve the efficiency of search for the problems evaluated.

Keywords

  • estimation of distribution algorithm
  • protein design
  • energy minimization algorithms.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baluja, S., Davies, S.: Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space. In: Proceedings of the 14th International Conference on Machine Learning, pp. 30–38. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  2. Belda, I., Madurga, S., Llorá, X., Martinell, M., Tarragó, T., Piqueras, M., Nicolás, E., Giralt, E.: ENPDA: An evolutionary structure-based de novo peptide design algorithm. Journal of Computer-Aided Molecular Design 19(8), 585–601 (2005)

    CrossRef  Google Scholar 

  3. Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory 14(3), 462–467 (1968)

    CrossRef  MATH  Google Scholar 

  4. Dunbrack, R.L.: Rotamer libraries in the 21st century. Current Opinion in Structural Biology 12, 431–440 (2002)

    CrossRef  Google Scholar 

  5. Henrion, M.: Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In: Lemmer, J.F., Kanal, L.N. (eds.) Proceedings of the Second Annual Conference on Uncertainty in Artificial Intelligence, pp. 149–164. Elsevier, Amsterdam (1988)

    Google Scholar 

  6. Hsu, J.C.: Multiple Comparisons: Theory and Methods. Chapman and Hall, Boca Raton (1996)

    MATH  Google Scholar 

  7. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  8. Lehmann, M., Kostrewa, D., Wyss, M., Brugger, R., D‘Arcy, A., Pasamontes, L., van Loon, A.: From DNA sequence to improved functionality: Using protein sequence comparisons to rapidly design a thermostable consensus phytase. Protein Engineering 13, 49–57 (2000)

    CrossRef  Google Scholar 

  9. Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E.: Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  10. Meyerguz, L., Grasso, C., Kleinberg, J., Elber, R.: Computational analysis of sequence selection mechanisms. Structure 12(4), 547–557 (2004)

    CrossRef  Google Scholar 

  11. Meyerguz, L., Kempe, D., Kleinberg, J., Elber, R.: The evolutionary capacity of protein structures. In: Proceedings of the Eighth Annual International Conference on Research in Computational Molecular Biology, pp. 290–297. Morgan Kaufmann Publishers, San Francisco (2004)

    CrossRef  Google Scholar 

  12. Mühlenbein, H., Mahnig, T., Ochoa, A.: Schemata, distributions and graphical models in evolutionary optimization. Journal of Heuristics 5(2), 213–247 (1999)

    CrossRef  Google Scholar 

  13. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions I. Binary parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)

    CrossRef  Google Scholar 

  14. Park, S., Kono, H., Wang, W., Boder, E.T., Saven, J.G.: Progress in the development and application of computational methods for probabilistic protein design. Computers and Chemical Engineering 29, 407–421 (2005)

    CrossRef  Google Scholar 

  15. Pelikan, M., Mühlenbein, H.: The bivariate marginal distribution algorithm. In: Roy, R., Furuhashi, T., Chawdhry, P. (eds.) Advances in Soft Computing - Engineering Design and Manufacturing, pp. 521–535. Springer, London (1999)

    Google Scholar 

  16. Santana, R., de León, E.P., Ochoa, A.: The edge incident model. In: Proceedings of the Second Symposium on Artificial Intelligence (CIMAF-99), Habana, Cuba, pp. 352–359 (March 1999)

    Google Scholar 

  17. Santana, R., Larrañaga, P., Lozano, J.A.: Protein folding in 2-dimensional lattices with estimation of distribution algorithms. In: Barreiro, J.M., Martín-Sánchez, F., Maojo, V., Sanz, F. (eds.) ISBMDA 2004. LNCS, vol. 3337, pp. 388–398. Springer, Heidelberg (2004)

    Google Scholar 

  18. Santana, R., Larrañaga, P., Lozano, J.A.: Side chain placement using estimation of distribution algorithms. Artificial Intelligence in Medicine 39(1), 49–63 (2006)

    CrossRef  Google Scholar 

  19. Tobi, D., Elber, R.: Distance-dependent, pair potential for protein folding: Results from linear optimization. Proteins 41(1), 40–46 (2000)

    CrossRef  Google Scholar 

  20. Zhu, J., Zhu, Q., Shi, Y., Liu, H.: How well can we predict native contacts in proteins based on decoy structures and their energies? Proteins: Structure, Function, and Genetics 52(4), 598–608 (2003)

    CrossRef  Google Scholar 

  21. Zou, J., Saven, J.G.: Using self-consistent fields to bias Monte Carlo methods with applications to designing and sampling protein sequences. The Journal of Chemical Physics 118(8), 3843–3854 (2003)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Elena Marchiori Jason H. Moore Jagath C. Rajapakse

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Santana, R., Larrañaga, P., Lozano, J.A. (2007). The Role of a Priori Information in the Minimization of Contact Potentials by Means of Estimation of Distribution Algorithms. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds) Evolutionary Computation,Machine Learning and Data Mining in Bioinformatics. EvoBIO 2007. Lecture Notes in Computer Science, vol 4447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71783-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71783-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71782-9

  • Online ISBN: 978-3-540-71783-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics