Skip to main content

Virtual Error: A New Measure for Evolutionary Biclustering

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4447)

Abstract

Many heuristics used for finding biclusters in microarray data use the mean squared residue as a way of evaluating the quality of biclusters. This has led to the discovery of interesting biclusters. Recently it has been proven that the mean squared residue may fail to identify some interesting biclusters. This motivates us to introduce a new measure, called Virtual Error, for assessing the quality of biclusters in microarray data. In order to test the validity of the proposed measure, we include it within an evolutionary algorithm. Experimental results show that the use of this novel measure is effective for finding interesting biclusters, which could not have been discovered with the use of the mean squared residue.

Keywords

  • Microarray Data
  • Evolutionary Algorithm
  • Gene Expression Data
  • Expression Matrix
  • Scaling Pattern

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar-Ruiz, J.S.: Shifting and scaling patterns from gene expression data. Bioinformatics 21, 3840–3845 (2005)

    CrossRef  Google Scholar 

  2. Aguilar-Ruiz, J.S., Rodriguez, D.S., Simovici, D.A.: Biclustering of gene expression data based on local nearness. In: 1Proceedings of EGC 2006, Lille, France, pp. 681–692 (2006)

    Google Scholar 

  3. Alizadeh, A.A., Eisen, M.B., Davis, R.E., et al.: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)

    CrossRef  Google Scholar 

  4. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. Journal of Computational Biology 6(3-4), 281–297 (1999)

    CrossRef  Google Scholar 

  5. Bleuler, S., Prelić, A., Zitzler, E.: An EA framework for biclustering of gene expression data. In: An, E.A. (ed.) Congress on Evolutionary Computation, CEC-2004, pp. 166–173. IEEE Computer Society Press, Piscataway (2004)

    CrossRef  Google Scholar 

  6. Cheng, Y., Church, G.M.: Biclustering of expression data. In: In Proceedings of the 8th International Conference on Intellingent Systems for Molecular Biology, La Jolla, CA, pp. 93–103 (2000)

    Google Scholar 

  7. Cho, R., Campbell, M., Winzeler, E.: A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell 2, 65–73 (1998)

    CrossRef  Google Scholar 

  8. Divina, F., Aguilar-Ruiz, J.S.: Biclustering of expression data with evolutionary computation. IEEE Transactions on Knowledge & Data Engineering 18(5), 590–602 (2006)

    CrossRef  Google Scholar 

  9. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: A survey. IEEE Transactions on Computational Biology and Bioinformatics 1, 24–25 (2004)

    CrossRef  Google Scholar 

  10. Prelić, A., Bleuler, S., Zimmermann, P., et al.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22, 1122–1129 (2006)

    CrossRef  Google Scholar 

  11. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18, 136–144 (2002)

    Google Scholar 

  12. Tilstone, C.: Dna microarrays: Vital statistics. Nature 424, 610–612 (2003)

    CrossRef  Google Scholar 

  13. Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by pattern similarity in large data sets. In: ACM SIGMOD International Conference on Management of Data, Madison, WI, pp. 394 (2002)

    Google Scholar 

  14. Yang, J., Wang, H., Wang, W., Yu, P.S.: An improved biclustering method for analyzing gene expression profiles. International Journal on Artificial Intelligence Tools 14, 771–790 (2005)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Elena Marchiori Jason H. Moore Jagath C. Rajapakse

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Pontes, B., Divina, F., Giráldez, R., Aguilar–Ruiz, J.S. (2007). Virtual Error: A New Measure for Evolutionary Biclustering. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds) Evolutionary Computation,Machine Learning and Data Mining in Bioinformatics. EvoBIO 2007. Lecture Notes in Computer Science, vol 4447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71783-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71783-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71782-9

  • Online ISBN: 978-3-540-71783-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics