Skip to main content

Inverse Protein Folding on 2D Off-Lattice Model: Initial Results and Perspectives

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4447)

Abstract

Inverse protein folding or protein design stands for searching a particular amino acids sequence whose native structure or folding matches a pre specified target.

The problem of finding the corresponding folded structure of a particular sequence is, per se, a hard computational problem.

We use a genetic algorithm for searching the space of potential sequences, and the fitness of each individual is measured with the output of a second GA performing a minimization process in the space of structures.

Using an off-lattice protein-like 2D model, we show how the implemented techniques are able to obtain a variety of sequences attaining the target structures proposed.

Keywords

  • Genetic Algorithm
  • Protein Design
  • Interaction Matrix
  • Target Structure
  • Protein Structure Prediction

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181(96), 223–230 (1973)

    CrossRef  Google Scholar 

  2. Berman, P., DasGupta, B., Mubayi, D., Sloan, R., Turan, G., Zhang, Y.: The inverse protein folding problem on 2d and 3d lattices. Discrete Applied Mathematics (to appear 2007)

    Google Scholar 

  3. Budin, N., Ahmed, S., Majeux, N., Caflisch, A.: An evolutionary approach for structure-based design of natural and non-natural peptidic ligands. Comb. Chem. High Throughput Screen 4(8), 661–673 (2001)

    Google Scholar 

  4. Barrios, D.M.D., Carrascal, A., Rios, J.: Optimisation with real coded genetic algorithms based on mathematical morphology. International Journal of Computer Mathematics 80(3), 275–293 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Nelson, D.L., Cox, M.M.: Lehninger Principles of Biochemistry. W.H. Freeman, New York (2004)

    Google Scholar 

  6. Fraenkel, A.S.: Complexity of protein folding. Bulletin of Mathematical Biology 6 (1993)

    Google Scholar 

  7. Gupta, A., Manuch, J., Stacho, L.: Structure-approximating inverse protein folding problem in the 2d hp model. J. of Comp. Biology 12(10), 1328–1345 (2005)

    CrossRef  Google Scholar 

  8. Jones, D.: De novo protein design using pairwise potentials and a genetic algorithm. Protein Sci. 3(4), 567–574 (1994)

    CrossRef  Google Scholar 

  9. Koskowski, F., Hartke, B.: Towards protein folding with evolutionary techniques. J. Comput. Chem. 26(11), 1169–1179 (2005)

    CrossRef  Google Scholar 

  10. Krasnogor, N., Hart, W., Smith, J., Pelta, D.: Protein structure prediction with evolutionary algorithms. In: Banzhaf, W., et al. (eds.) Proceedings of GECCO, pp. 1596–1601. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  11. Lameijer, E.-W., Bäck, T., Kok, J.N., Ijzerman, A.P.: Evolutionary algorithms in drug design. Natural Computing 4, 177–243 (2005)

    CrossRef  MathSciNet  Google Scholar 

  12. Lau, K., Dill, K.: Theory for protein mutability and biogenesis. PNAS 87(2), 638–642 (1990)

    CrossRef  Google Scholar 

  13. Moult, J.: A decade of casp: progress, bottlenecks and prognosis in protein structure prediction. Curr. Opin. Struct. Biol. 15(3), 285–289 (2005)

    CrossRef  Google Scholar 

  14. Pierce, N.A., Winfree, E.: Protein design is np-hard. Protein Engineering 15(10), 779–782 (2002)

    CrossRef  Google Scholar 

  15. Pokala, N., Handel, T.M.: Review: protein design–where we were, where we are, where we’re going. J. Struct. Biol. 134(2-3), 269–281 (2001)

    CrossRef  Google Scholar 

  16. Unger, R.: The genetic algorithm approach to protein structure prediction. Structure and Bonding 110, 153–175 (2004)

    Google Scholar 

  17. Unger, R., Moult, J.: Finding the Lowest Free Energy Conformation of a Protein is an NP–hard Problem: Proof and Implications. Bulletin of Mathematical Biology 55(6), 1183–1198 (1993)

    MATH  Google Scholar 

  18. Unger, R., Moult, J.: Genetic algorithms for protein folding simulations. Journal of Molecular Biology 231(1), 75–81 (1993)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Elena Marchiori Jason H. Moore Jagath C. Rajapakse

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Pelta, D., Carrascal, A. (2007). Inverse Protein Folding on 2D Off-Lattice Model: Initial Results and Perspectives. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds) Evolutionary Computation,Machine Learning and Data Mining in Bioinformatics. EvoBIO 2007. Lecture Notes in Computer Science, vol 4447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71783-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71783-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71782-9

  • Online ISBN: 978-3-540-71783-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics