Skip to main content

A Gaussian Evolutionary Method for Predicting Protein-Protein Interaction Sites

  • Conference paper
  • 1341 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4447)

Abstract

Protein-protein interactions play a pivotal role in modern molecular biology. Identifying the protein-protein interaction sites is great scientific and practical interest for predicting protein-protein interactions. In this study, we proposed a Gaussian Evolutionary Method (GEM) to optimize 18 features, including ten atomic solvent and eight protein 2nd structure features, for predicting protein-protein interaction sites. The training set consists of 104 unbound proteins selected from PDB and the predicted successful rate is 65.4% (68/104) proteins in the training dataset. These 18 parameters were then applied to a test set with 50 unbound proteins. Based on the threshold obtained from the training set, our method is able to predict the binding sites for 98% (49/50) proteins and yield 46% successful prediction and 42.3% average specificity. Here, a binding-site prediction is considered successful if 50% predicted area is indeed located in protein-protein interface (i.e. the specificity is more than 0.5). We believe that the optimized parameters of our method are useful for analyzing protein-protein interfaces and for interfaces prediction methods and protein-protein docking methods.

Keywords

  • Atomic solvation parameter
  • Gaussian evolutionary method
  • protein-protein interactions
  • protein-protein binding site.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones, S., Thornton, J.M.: Principles of protein-protein interactions. Proceedings of the National Academy of Sciences of the United States of America 93(1), 13–20 (1996)

    CrossRef  Google Scholar 

  2. Jones, S., Thornton, J.M.: Prediction of protein-protein interaction sites using patch analysis. Journal of Molecular Biology 272(1), 133–143 (1997)

    CrossRef  Google Scholar 

  3. Jones, S., Thornton, J.M.: Analysis of protein-protein interaction sites using surface patches. Journal of Molecular Biology 272(1), 121–132 (1997)

    CrossRef  Google Scholar 

  4. Nooren, I.M., Thornton, J.M.: Diversity of protein-protein interactions. EMBO Journal 22(14), 3486–3492 (2003)

    CrossRef  Google Scholar 

  5. Vakser, I.A., Aflalo, C.: Hydrophobic docking: a proposed enhancement to molecular recognition techniques. Proteins: Structure, Function and Genetics 20(4), 320–329 (1994)

    CrossRef  Google Scholar 

  6. Young, L., Jernigan, R.L., Covell, D.G.: A role for surface hydrophobicity in protein-protein recognition. Protein Science 3(5), 717–729 (1994)

    Google Scholar 

  7. Fernandez-Recio, J., Totrov, M., Abagyan, R.: Identification of protein-protein interaction sites from docking energy landscapes. Journal of Molecular Biology 335(3), 843–865 (2004)

    CrossRef  Google Scholar 

  8. Fernandez-Recio, J., Totrov, M., Skorodumov, C., Abagyan, R.: Optimal docking area: a new method for predicting protein-protein interaction sites. Proteins: Structure, Function, and Bioinformatics 58(1), 134–143 (2005)

    CrossRef  Google Scholar 

  9. Fariselli, P., Pazos, F., Valencia, A., Casadio, R.: Prediction of protein–protein interaction sites in heterocomplexes with neural networks. European Journal of Biochemistry 269(5), 1356–1361 (2002)

    CrossRef  Google Scholar 

  10. Keil, M., Exner, T.E, Brickmann, J.: Pattern recognition strategies for molecular surfaces: III. Binding site prediction with a neural network. Journal of Computational Chemistry 25(6), 779–789 (2004)

    CrossRef  Google Scholar 

  11. Neuvirth, H., Raz, R., Schreiber, G.: ProMate: a structure based prediction program to identify the location of protein-protein binding sites. Journal of Molecular Biology 338(1), 181–199 (2004)

    CrossRef  Google Scholar 

  12. Zhou, H.X., Shan, Y.: Prediction of protein interaction sites from sequence profile and residue neighbor list. Proteins: Structure, Function and Genetics 44(3), 336–343 (2001)

    CrossRef  Google Scholar 

  13. Yang, J.M.: Development and evaluation of a generic evolutionary method for protein-ligand docking. Journal of Computational Chemistry 25(6), 843–857 (2004)

    CrossRef  Google Scholar 

  14. Yang, J.M., Chen, C.C.: GEMDOCK: a generic evolutionary method for molecular docking. Proteins: Structure, Function, and Bioinformatics 55(2), 288–304 (2004)

    CrossRef  Google Scholar 

  15. Yang, J.M., Horng, J.T., Kao, C.Y.: A genetic algorithm with adaptive mutations and family competition for training neural networks. International Journal of Neural Systems 10(5), 333–352 (2000)

    Google Scholar 

  16. Yang, J.M., Kao, C.Y.: A family competition evolutionary algorithm for automated docking of flexible ligands to proteins. IEEE Transactions on Information Technology in Biomedicine 4(3), 225–237 (2000)

    CrossRef  Google Scholar 

  17. Yang, J.M., Shen, T.W.: A pharmacophore-based evolutionary approach for screening selective estrogen receptor modulators. Proteins: Structure, Function, and Bioinformatics 59(2), 205–220 (2005)

    CrossRef  MathSciNet  Google Scholar 

  18. Yang, J.M., Tsai, C.H., Hwang, M.J., Tsai, H.K., Hwang, J.K., Kao, C.Y.: GEM: a Gaussian Evolutionary Method for predicting protein side-chain conformations. Protein Science 11(8), 1897–1907 (2002)

    CrossRef  Google Scholar 

  19. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12), 2577–2637 (1983)

    CrossRef  Google Scholar 

  20. Chen, R., Mintseris, J., Janin, J., Weng, Z.: A protein-protein docking benchmark. Proteins: Structure, Function and Genetics 52(1), 88–91 (2003)

    CrossRef  Google Scholar 

  21. Bradford, J.R., Westhead, D.R.: Improved prediction of protein-protein binding sites using a support vector machines approach. Bioinformatics 21(8), 1487–1494 (2005)

    CrossRef  Google Scholar 

  22. Yan, C., Dobbs, D., Honavar, V.: A two-stage classifier for identification of protein-protein interface residues. Bioinformatics 20(Suppl. 1), I371–I378 (2004)

    CrossRef  Google Scholar 

  23. Rost, B., Sander, C.: Conservation and prediction of solvent accessibility in protein families. Proteins: Structure, Function, and Genetics 20(3), 216–226 (1994)

    CrossRef  Google Scholar 

  24. Ansari, S., Helms, V.: Statistical analysis of predominantly transient protein-protein interfaces. Proteins: Structure, Function, and Bioinformatics 61(2), 344–355 (2005)

    CrossRef  Google Scholar 

  25. Ofran, Y., Rost, B.: Predicted protein-protein interaction sites from local sequence information. FEBS Letters 544(1-3), 236–239 (2003)

    CrossRef  Google Scholar 

  26. Sternberg, M.J., Gabb, H.A., Jackson, R.M.: Predictive docking of protein-protein and protein-DNA complexes. Current Opinion in Structural Biology 8(2), 250–256 (1998)

    CrossRef  Google Scholar 

  27. Eisenberg, D., McLachlan, A.D.: Solvation energy in protein folding and binding. Nature 319(6050), 199–203 (1986)

    CrossRef  Google Scholar 

  28. Wesson, L., Eisenberg, D.: Atomic solvation parameters applied to molecular dynamics of proteins in solution. Protein Science 1(2), 227–235 (1992)

    CrossRef  Google Scholar 

  29. Egloff, M.P., Sarda, L., Verger, R., Cambillau, C., van Tilbeurgh, H.: Crystallographic study of the structure of colipase and of the interaction with pancreatic lipase. Protein Science 4(1), 44–57 (1995)

    Google Scholar 

  30. Caffrey, D.R., Somaroo, S., Hughes, J.D., Mintseris, J., Huang, E.S.: Are protein-protein interfaces more conserved in sequence than the rest of the protein surface? Protein Science 13(1), 190–202 (2004)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Elena Marchiori Jason H. Moore Jagath C. Rajapakse

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Liu, KP., Yang, JM. (2007). A Gaussian Evolutionary Method for Predicting Protein-Protein Interaction Sites. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds) Evolutionary Computation,Machine Learning and Data Mining in Bioinformatics. EvoBIO 2007. Lecture Notes in Computer Science, vol 4447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71783-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71783-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71782-9

  • Online ISBN: 978-3-540-71783-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics