Skip to main content

Identifying Regulatory Sites Using Neighborhood Species

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4447)

Abstract

The annotation of transcription binding sites in new sequenced genomes is an important and challenging problem. We have previously shown how a regression model that linearly relates gene expression levels to the matching scores of nucleotide patterns allows us to identify DNA-binding sites from a collection of co-regulated genes and their nearby non-coding DNA sequences. Our methodology uses Bayesian models and stochastic search techniques to select transcription factor binding site candidates. Here we show that this methodology allows us to identify binding sites in nearby species. We present examples of annotation crossing from Schizosaccharomyces pombe to Schizosaccharomyces japonicus. We found that the eng1 motif is also regulating a set of 9 genes in S. japonicus. Our framework may have an effective interest in conveying information in the annotation process of a new species. Finally we discuss a number of statistical and biological issues related to the identification of binding sites through covariates of genes expression and sequences.

Keywords

  • Variable Selection Method
  • Pattern Score
  • Candidate Motif
  • Debaryomyces Hansenii
  • Markov Chain Monte Carlo Chain

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, P.J., Vannucci, M., Fearn, T.: Multivariate bayesian variable selection and prediction. J. R. Stat. Soc. Ser. B 60, 627–641 (1998)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Bullerwell, C.E., Leigh, J., Forget, L., Lang, B.F.: A comparison of three fission yeast mitochondrial genomes. Nucleic Acids Res. 31(2), 759–768 (2003)

    CrossRef  Google Scholar 

  3. Conlon, E.M., Song, J.J., Liu, J.S.: Bayesian models for pooling microarray studies with multiple sources of replications. BMC Bioinformatics 7, 247 (2006)

    CrossRef  Google Scholar 

  4. Conlon, E.M, Liu, X.S., Lieb, J.D, Liu, J.S: Integrating regulatory motif discovery and genome-wide expression analysis. Proc. Natl. Acad. Sci. 100(6), 3339–3344 (2003)

    CrossRef  Google Scholar 

  5. Liu, X.S., Brutlag, D.L., Liu, J.S.: An algorithm for finding protein-dna binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nat. Biotechnol. 20(8), 835–839 (2002)

    Google Scholar 

  6. Oliva, A., Rosebrock A., Ferrezuelo, F., Pyne S., Chen, H., Skiena, S., Futcher, B., Leatherwood, J.: The cell cycle-regulated genes of schizosaccharomyces pombe. PLoS Biol. 3(7), e225 (2005)

    Google Scholar 

  7. Rajewsky, N., Socci, N.D., Zapotocky, M., Siggia, E.D.: The evolution of dna regulatory regions for proteo-gamma bacteria by interspecies comparisons. Genome Res. 12(2), 298–308 (2002)

    CrossRef  Google Scholar 

  8. Tadesse, M.G, Vannucci, M., Liò, P.: Identification of dna regulatory motifs using bayesian variable selection. Bioinformatics 20(16), 2553–2561 (2004)

    CrossRef  Google Scholar 

  9. van Helden, J., Andr, B., Collado-Vides, J.: Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J. Mol. Biol. 281(5), 827–842 (1998)

    CrossRef  Google Scholar 

  10. Whelan, S., Li, P., Goldman, N.: Molecular phylogenetics: state-of-the-art methods for looking into the past. Trends Genet. 17(5), 262–272 (2001)

    CrossRef  Google Scholar 

  11. Zwick, M.E., Mcafee, F., Cutler, D.J., Read, T.D., Ravel, J., Bowman, G.R., Galloway, D.R., Mateczun, A.: Microarray-based resequencing of multiple bacillus anthracis isolates. Genome Biol. 6(1), R10 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Elena Marchiori Jason H. Moore Jagath C. Rajapakse

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Angelini, C., Cutillo, L., De Feis, I., van der Wath, R., Lio’, P. (2007). Identifying Regulatory Sites Using Neighborhood Species. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds) Evolutionary Computation,Machine Learning and Data Mining in Bioinformatics. EvoBIO 2007. Lecture Notes in Computer Science, vol 4447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71783-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71783-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71782-9

  • Online ISBN: 978-3-540-71783-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics