Skip to main content

Gladiolus

  • Chapter
Transgenic Crops VI

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 61))

  • 1219 Accesses

Abstract

Gladiolus is an important floral crop used world-wide as both a cutflower and planted in the garden. Viruses are a major problem for bulb crops because the plants are propagated each year by bulbs that harbor virus. Genetic engineering for virus resistance could be important for bulb crops such as Gladiolus as there are no virus-resistant cultivars available for breeding. The development of Gladiolus plants with antiviral genes for bean yellow mosaic virus and cucumber mosaic virus are described. Successful genetic engineering for disease resistance requires an appropriate promoter. Gene expression using promoters isolated from various species, including Gladiolus, is described. Although Gladiolus is a monocot, higher levels of gene expression are achieved with dicot-derived, rather than monocot, promoters. The highest levels of gene expression in Gladiolus has occurred using a ubiquitin promoter isolated from Gladiolus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebig JA, Kamo K, Hsu H-T (2005) Biolistic inoculation of gladiolus with cucumber mosaic cucumovirus. J Virol Methods 123:89–94

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM, Palukaitis P, Zaitlin M (1992) A defective replicase gene induces resistance to cucumber mosaic virus in transgenic tobacco plants. Proc Natl Acad Sci USA 89:8759–8763

    Article  PubMed  CAS  Google Scholar 

  • Babu P, Chawla HS (2000) In vitro regeneration and Agrobacterium mediated transformation in gladiolus. J Hortic Sci Biotechnol 75:400–404

    Google Scholar 

  • Bajaj YPS, Sidhu MMS, Gill APS (1982) Some factors affecting the in vitro propagation of gladiolus. Sci Hortic 18:269–275

    Article  Google Scholar 

  • Chauvin JE, Hamann H, Cohat J, Le Nard M (1997) Selective agent and marker genes for use in genetic transformation of Gladiolus grandiflorus and Tulipa gesneriana. Acta Hortic 430:291–297

    CAS  Google Scholar 

  • Chu PWG, Anderson BJ, Khan MRI, Shukla D, Higgins TJV (1999) Production of bean yellow mosaiv virus resistant subterranean clover (Trifolium subterraneum) plants by transformation with the virus coat protein gene. Ann Appl Biol 135:489–490

    Article  Google Scholar 

  • Dantu PK, Bhojwani SS (1987) In vitro propagation and corm formation in Gladiolus. Gartenbauwissenschaft 52:90–93

    CAS  Google Scholar 

  • Gahakwa D, Maqbool SB, FuX, Sudhakar D, Christou P, Kohli A (2000) Transgenic rice as a system to study the stability of transgene expression: multiple heterologous transgenes show similar behaviour in diverse genetic backgrounds. Theor Appl Genet 101:388–399

    Article  CAS  Google Scholar 

  • Gielen J, Ultzen T, Bontems S, Loots W, Schepen A van, Westerbroek A, Haan P de, Grinsven M van (1996) Coat protein-mediated protection to cucumber mosaic virus infections in cultivated tomato. Euphytica 88:139–149

    Article  CAS  Google Scholar 

  • Goo DH, Joung HY, Kim KW (2003) Differentiation of Gladiolus plantlets from callus and subsequent flowering. Acta Hortic 620:339–343

    CAS  Google Scholar 

  • Graves ACR, Goldman SL (1987) Agrobacterium tumefaciens-mediated transformation of the monocot genus Gladiolus: detection of expression of T-DNA-encoded genes. J Bacteriol 169:1745–1746

    PubMed  CAS  Google Scholar 

  • Gupta SD, Datta S (2003) Antioxidant enzyme activities during in vitro morphogenesis of gladiolus and the effect of application of antioxidants on plant regeneration. Biol Plant 47:179–183

    Article  CAS  Google Scholar 

  • Hammond J, Kamo KK (1995a) Resistance to bean yellow mosaic virus (BYMV) and other potyviruses in transgenic plants expressing BYMV antisense RNA, coat protein, or chimeric coat proteins. In: Bills DD, Kung SD (eds) Biotechnology and plant protection: viral pathogenesis and disease resistance. World Scientific, Singapore, pp 369–389

    Google Scholar 

  • Hammond J, Kamo KK (1995b) Effective resistance to potyvirus infection conferred by expression of antisense RNA in transgenic plants. Mol Plant Microbe Interact 8:674–682

    PubMed  CAS  Google Scholar 

  • Helleco-Kervarrec C, Riault G, Jacquot E (2002) Biolistic-mediated inoculation of immature wheat embryos with barley yellow dwarf virus-PAV. J Virol Methods 102:161–166

    Article  Google Scholar 

  • Hoffmann K, Verbeek M, Romano A, Dullemans AM, Heuvel JFJM van den, Wilk F van der (2002) Mechanical transmission of poleroviruses. J Virol Methods 91:197–201

    Article  Google Scholar 

  • Inglebrecht IL, Irvine JE, Mirkov TE (1999) Posttranscriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploid genome. Plant Physiol 119:1187–1197

    Article  Google Scholar 

  • Iyer LM, Kumpatla S, Chandrasekharan MB, Hall TC (2000) Transgene silencing in monocots. Plant Mol Biol 43:323–346

    Article  PubMed  CAS  Google Scholar 

  • Joung YH, Kamo K (2006) Expression of a polyubiquitin promoter isolated from Gladiolus. Plant Cell Rep 25:1081–1088

    Article  PubMed  CAS  Google Scholar 

  • Kamo K (1994) Effect of phytohormones on plant regeneration from callus of Gladiolus cultivar “Jenny Lee”. In Vitro Cell Dev Biol 30P:26–31

    CAS  Google Scholar 

  • Kamo K (1995) A cultivar comparison of plant regeneration from suspension cells, callus, and cormel slices of Gladiolus. In Vitro Cell Dev Biol 31:113–115

    Article  Google Scholar 

  • Kamo KK (2003) Long-term expression of the uidA gene in Gladiolus plants under control of either the ubiquitin, rolD, mannopine synthase, or cauliflower mosaic virus promoters following three seasons of dormancy. Plant Cell Rep 21:797–803

    PubMed  CAS  Google Scholar 

  • Kamo K, Blowers A (1999) Tissue specificity and expression level of gusA under rolD, mannopine synthase and translation elongation factor 1 subunit α promoters in transgenic Gladiolus plants. Plant Cell Rep 18:809–815

    Article  CAS  Google Scholar 

  • Kamo K, Van Eck J (1997) Effect of bialaphos and phosphinothricin on plant regeneration from long- and short-term callus cultures of Gladiolus. In Vitro Cell Dev Biol Plant 33:180–183

    Article  CAS  Google Scholar 

  • Kamo K, Chen J, Lawson R (1990) The establishment of cell suspension cultures of Gladiolus that regenerate plants. In Vitro Cell Dev Biol Plant 26:425–430

    Article  CAS  Google Scholar 

  • Kamo K, Blowers A, Smith, Van Eck J (1995a) Stable transformation of Gladiolus by particle gun bombardment of cormels. Plant Sci 110:105–111

    Article  CAS  Google Scholar 

  • Kamo K, Blowers A, Smith F, Van Eck J, Lawson R (1995b) Stable transformation of Gladiolus using suspension cells and callus. J Am Soc Hortic Sci 120:437–352

    Google Scholar 

  • Kamo K, Blowers A, McElroy D (2000) Effect of the cauliflower mosaic virus 35S, actin, and ubiquitin promoters on uidA expression from a bar-uidA fusion gene in transgenic Gladiolus plants. In Vitro Cell Dev Biol Plant 36:13–20

    Article  CAS  Google Scholar 

  • Kamo K, Gera A, Cohen J, Hammond J, Blowers A, Smith F, Van Eck J (2005) Transgenic Gladiolus plants transformed with either the Bean yellow mosaic virus coat protein gene in sense or antisense orientations. Plant Cell Rep 23:654–663

    Article  PubMed  CAS  Google Scholar 

  • Kanno T, Naito S, Shimamoto K (2000) Post-transcriptional gene silencing in cultured rice cells. Plant Cell Physiol 41:321–326

    PubMed  CAS  Google Scholar 

  • Kasumi M, Takatsu Y, Tomotsune H, Sakuma F (1998) Callus formation and plant regeneration from developing ovaries in Gladiolus. J Jpn Soc Hortic Sci 67:951–957

    Article  CAS  Google Scholar 

  • Kohli A, Gahakwa D, Vain P, Laurie DA, Christou P (1999) Transgene expression in rice engineered through particle bombardment: molecular factors controlling stable expression and transgene silencing. Planta 208:88–97

    Article  CAS  Google Scholar 

  • Kumar A, Sood A, Palni LMS, Gupta AK (1999) In vitro propagation of Gladiolus hybridus Hort.: synergistic effect of heat shock and sucrose on morphogenesis. Plant Cell Tissue Organ Cult 57:105–112

    Article  CAS  Google Scholar 

  • Lambe P, Diana M, Matagne RF (1995) Differential long-term expression and methylation of the hygromycin phosphotransferase (hph) and β-glucuronidase (GUS) genes in transgenic pearl millet (Pennisetum glaucum) callus. Plant Sci 108:51–62

    Article  CAS  Google Scholar 

  • Lilien-Kipnis H, Kochba M (1987) Mass propagation of new gladiolus hybrids. Acta Hortic 212:631–638

    Google Scholar 

  • Maas HM van der, Jong ER de, Rueb S, Hensgens LAM, Krens FA (1994) Stable transformation and long-term expression of the gusA reporter gene in callus lines of perennial ryegrass (Lolium perenne L.). Plant Mol Biol 24:401–405

    Article  Google Scholar 

  • Mahendra VSSP, Gupta SD (2004) Trichromatic sorting of in vitro regenerated plants of gladiolus using adaptive resonance theory. Curr Sci 87:348–353

    Google Scholar 

  • Mueller E, Gilbert J, Davenport G, Brigneti G, Baulcombe DC (1995) Homology-dependent resistance: transgenic virus resistance in plants related to homology-dependent gene silencing. Plant J 7:1001–1013

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–492

    Article  CAS  Google Scholar 

  • Nakamura S, Honkura R, Ugaki M, Ohshima M, Ohashi Y (1994) Nucleotide sequence of the 3’-terminal region of bean yellow mosaic virus RNA and resistance to viral infection in transgenic Nicotiana benthamiana expressing its coat protein gene. Ann Phytopathol Soc Jpn 60:295–304

    CAS  Google Scholar 

  • Nhut DT, Teixeira da Silva JA, Huyen PX, Paek KY (2004) The importance of explant source on regeneration and micropropagation of Gladiolus by liquid shake culture. Sci Hortic 102:407–414

    Article  Google Scholar 

  • Oard JH, Linscombe SD, Braverman MP, Jodari F, Blouin DC, Leech M, Kohli A, Vain P, Cooley JC, Christou P (1996) Development, field evaluation, and agronomic performance of transgenic herbicide resistant rice. Mol Breed 2:359–368

    Article  CAS  Google Scholar 

  • Register JC III, Peterson DJ, Bell PB, Bullock WP, Evans IJ, Frame B, Greenland AG, Higgs NS, Jepson I, Jiao S, Lewnau CJ, Stillick JM, Wilson HM (1994) Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol Biol 25:951–961

    Article  PubMed  CAS  Google Scholar 

  • Remotti PC (1995) Primary and secondary embryogenesis from cell suspension cultures of Gladiolus. Plant Sci 107:205–214

    Article  CAS  Google Scholar 

  • Remotti R, Loffler HJM (1995) Callus induction and plant regeneration from gladiolus. Plant Cell Tissue Organ Cult 42:171–178

    Article  Google Scholar 

  • Remotti PC, Loffler HJM, Van Vloten-Doting L (1997) Selection of cell lines and regeneration of plants resistant to fusaric acid from Gladiolus x grandiflorus cv. ‘Peter Pears’. Euphytica 96:237–245

    Article  Google Scholar 

  • Simonsen J, Hildebrandt AC (1971) In vitro growth and differentiation of Gladiolus plants from callus cultures. Can J Bot 49:1817–1819

    Google Scholar 

  • Stefaniak B (1994) Somatic embryogenesis and plant regeneration of Gladiolus (Gladiolus hort.). Plant Cell Rep 13:386–389

    Article  CAS  Google Scholar 

  • Stein A (1995) Gladiolus. In: Loebenstein G, Lawson RH, Brunt AA (eds) Virus and virus-like diseases of bulb and flower crops. Wiley, New York, pp 281–292

    Google Scholar 

  • Sutter EG (1986) Micropropagation of Ixia viridifolia and a Gladiolus x homoglossum hybrid. Sci Hortic 29:181–189

    Article  Google Scholar 

  • USDA (2002) Statistics for floriculture crops. Available at: usda.mannlib.cornell.edu/reports/nassr/other/zfc-bb/

    Google Scholar 

  • Valat L, Mode F, Mauro MC, Burrus M (2003) Preliminary attempts to biolistic inoculation of grapevine fanleaf virus. J Virol Methods 108:29–40

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Jiang J, Oard JH (2000) Structure, expression and promoter activity of two polyubiquitin genes from rice (Oryza sativa L.). Plant Sci 156:201–211

    Article  PubMed  CAS  Google Scholar 

  • Watad AA, Yun D-J, Matsumoto T, Niu X, Wu Y, Kononowicz AK, Bressan RA, Hasegawa PM (1998) Microprojectile bombardment-mediated transformation of Lilium longiflorum. Plant Cell Rep 17:262–267

    Article  CAS  Google Scholar 

  • Wilfret GJ (1971) Shoot-tip culture of gladiolus: an evaluation of nutrient media for callus tissue development. Proc Fla State Hortic Soc 84:389–393

    CAS  Google Scholar 

  • Wilfret GJ (1992) Gladiolus. In: Larson RA (ed) Introduction to floriculture. Academic, San Diego, pp 144–154

    Google Scholar 

  • Ziv M (1979) Transplanting Gladiolus plants propagated in vitro. Sci Hortic 11:257–260

    Article  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Gladiolus. In: Pua, EC., Davey, M. (eds) Transgenic Crops VI. Biotechnology in Agriculture and Forestry, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71711-9_16

Download citation

Publish with us

Policies and ethics