Skip to main content

Henbane, Belladonna, Datura and Duboisia

  • Chapter
Transgenic Crops VI

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 61))

  • 1231 Accesses

Abstract

The tropanes have provided several important landmarks in the development of alkaloid biochemistry, and they have also played a pivotal role in successful metabolic engineering. Atropine was found early on by activity-guided fractionation (dilation of a cat’s eye). Preparation of tropinone was the first of many biomimetic syntheses that led on to thoughts of how alkaloids were produced in plants. In 1928 ornithine was suggested to be the real-life precursor of the tropane part of hyoscyamine. In the 1950s a labelled precursor (ornithine) was used for the first time to elucidate the biosynthesis of hyoscyamine. However, still today only some of the enzymes (and their respective genes) which are involved in the tropane pathway are known. The isolation of littorine and its intramolecular conversion into hyoscyamine remains a process without parallel in nature. Virus-induced gene silencing was used first to find the gene responsible for this unique rearrangement. Isolation of the h6h gene which is involved in the conversion of hyoscyamine to scopolamine started the entirely new era of metabolic engineering of secondary metabolites. This chapter describes also how functional geneomics and metabolomics can be used to discover missing genes in the pathway and to understand the regulation of the tropane alkaloids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altabella T, Angel E, Biondi S, Palazon J, Bagni N, Pinol MT (1995) Effect of rol genes from Agrobacterium rhizogenes on polyamine metabolism in tobacco roots. Physiol Plant 95:479–485

    Article  CAS  Google Scholar 

  • Arroo RRJ, Develi A, Meijers H, Vandewesterlo E, Kemp AK, Croes AF, Wullems GJ (1995) Effect of exogenous auxin on root morphology and secondary metabolism in Tagetes patula hairy root cultures. Physiol Plant 93:233–240

    Article  CAS  Google Scholar 

  • Asano N, Kato A, Watson AA (2001) Therapeutic applications of sugar-mimicking glycosidase inhibitors. Med Chem 1:145–154

    CAS  Google Scholar 

  • Boehringer–Ingelheim (2005) Development by business area. In: Boehringer–Ingelheim (ed) Value through innovation – annual report 2004. Boehringer–Ingelheim GmbH, Ingelheim, pp 34–41

    Google Scholar 

  • Bonhomme V, Laurain-Mattar D, Fliniaux MA (2000a) Effects of the rolC gene on hairy root: Induction development and tropane alkaloid production by Atropa belladonna. J Nat Prod 63:1249–1252

    Article  PubMed  CAS  Google Scholar 

  • Bonhomme V, Laurain-Mattar D, Lacoux J, Fliniaux MA, Jacquin-Dubreuil A (2000b) Tropane alkaloid production by hairy roots of Atropa belladonna obtained after transformation with Agrobacterium rhizogenes 15834 and Agrobacterium tumefaciens containing rolA, B, C genes only. J Biotechnol 81:151–158

    Article  PubMed  CAS  Google Scholar 

  • Boswell HD, Dräger B, McLauchlan WR, Portsteffen A, Robins DJ, Robins RJ, Walton NJ (1999) Specificities of the enzymes of N-alkyltropane biosynthesis in Brugmansia and Datura. Phytochemistry 52:871–878

    Article  PubMed  CAS  Google Scholar 

  • Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851

    Article  CAS  Google Scholar 

  • Burtin D, Michael AJ (1997) Overexpression of arginine decarboxylase in transgenic plants. Biochem J 325:331–337

    PubMed  CAS  Google Scholar 

  • Dewick PM (2002) Alkaloids medicinal natural products – a biosynthetic approach, 2nd edn. Wiley, Chichester, pp 291–403

    Google Scholar 

  • Dräger B (2004) Chemistry and biology of calystegines. Nat Prod Rep 21:211–223

    Article  PubMed  CAS  Google Scholar 

  • Eibl R, Eibl D (2002) Bioreactors for plant cell and tissue cultures. In: Oksman-Caldentey KM, Barz WH (eds) Plant biotechnology and transgenic plants. Dekker, New York, pp 163–200

    Google Scholar 

  • Geiger PL, Hesse K (1833) Darstellung des Atropins. Ann Pharm 5:43

    Article  Google Scholar 

  • Goddijn OJM, Dekam RJ, Zanetti A, Schilperoort RA, Hoge JHC (1992) Auxin rapidly down-regulates transcription of the tryptophan decarboxylase gene from Catharanthus roseus. Plant Mol Biol 18:1113–1120

    Article  PubMed  CAS  Google Scholar 

  • Goossens A, Häkkinen ST, Laakso I, Seppänen-Laakso T, Biondi S, De Sutter V, Lammertyn F, Nuutila AM, Söderlund H, Zabeau M, InzĂ© D, Oksman-Caldentey KM (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci USA 100:8595–8600

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Matsuda J, Yamada Y (1993) 2-Step epoxidation of hyoscyamine to scopolamine is catalyzed by bifunctional hyoscyamine 6-β-hydroxylase. FEBS Lett 329:35–39

    Article  PubMed  CAS  Google Scholar 

  • Hemscheidt T (2000) Tropane and related alkaloids. Topics Curr Chem 209:175–206

    Article  CAS  Google Scholar 

  • Humphrey AJ, O’Hagan D (2001) Tropane alkaloid biosynthesis. A century old problem unresolved. Nat Prod Rep 18:494–502

    Article  PubMed  CAS  Google Scholar 

  • Jouhikainen K, Lindgren L, Jokelainen T, Hiltunen R, Teeri TH, Oksman-Caldentey KM (1999) Enhancement of scopolamine production in Hyoscyamus muticus L. hairy root cultures by genetic engineering. Planta 208:545–551

    Article  CAS  Google Scholar 

  • Jung HY, Kang SM, Kang YM, Yun DJ, Bahk JD, Yang DZ, Choi MS (2003) Enhanced production of scopolamine by bacterial elicitors in adventitious root cultures of Scopolia parviflora. Enzyme Microb Technol 33:987–990

    Article  CAS  Google Scholar 

  • Kang SM, Jung HY, Kang YM, Yun DJ, Bahk JD, Yang JK, Choi MS (2004) Effects of methyl jasmonate and salicylic acid on the production of tropane alkaloids and the expression of PMT and H6H in adventitious root cultures of Scopolia parviflora. Plant Sci 166:745–751

    Article  CAS  Google Scholar 

  • Khanam N, Khoo C, Close R, Khan AG (2001a) Tropane alkaloid production by shoot culture of Duboisia myoporoides. Rev Br Phytochem 56:59–65

    Article  CAS  Google Scholar 

  • Khanam N, Khoo C, Khan AG (2001b) Effects of cytokinin–auxin combinations on cell arrangement in the basal stems and tropane alkaloid production in cultured non-rooted shoots of Duboisia myoporoides. Aust J Bot 49:443–450

    Article  CAS  Google Scholar 

  • Kim Y, Wyslouzil BE, Weathers PJ (2002) Invited review: secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell Dev Biol Plant 38:1–10

    CAS  Google Scholar 

  • Kutchan T (1995) Alkaloid biosynthesis – the basis for metabolic engineering of medicinal plants. Plant Cell 7:1059–1070

    Article  PubMed  CAS  Google Scholar 

  • Lee KT, Hirano H, Yamakawa T, Kodama T, Igarashi Y, Shimomura K (2001) Responses of transformed root culture of Atropa belladonna to salicylic acid stress. J Biosci Bioeng 91:586–589

    Article  PubMed  CAS  Google Scholar 

  • Lee OS, Kang YM, Jung HY, Min JY, Kang SM, Karigar CS, Prasad DT, Bahk JD, Choi MS (2005) Enhanced production of tropane alkaloids in Scopolia parviflora by introducing the PMT (putrescine N-methyltransferase) gene. In Vitro Cell Dev Biol Plant 41:167–172

    Article  CAS  Google Scholar 

  • Leete E, Marion L, Spenser ID (1954) Biogenesis of hyoscyamine. Nature 174:650–651

    Article  PubMed  CAS  Google Scholar 

  • Li R, Page J, Reed DW, Liu E, Nowak J, Pelcher L, Covello PS (2005) Carbon skeleton rearrangement in the tropane alkaloid pathway: lessons from functional genomics. Can Chem Conf Nat Prod Chem Biol 88:1102

    Google Scholar 

  • Lounasmaa M (1988) The tropane alkaloids. In: Brossi A (ed) The alkaloids, vol 33. Academic, New York, pp 2–81

    Google Scholar 

  • Lounasmaa M, Tamminen T (1993) The tropane alkaloids. In: Cordell GA (ed) The alkaloids: chemistry and pharmacology, vol 44. Academic, San Diego, pp 1–114

    Google Scholar 

  • Mayer MJ, Michael AJ (2003) Polyamine homeostasis in transgenic plants overexpressing ornithine decarboxylase includes ornithine limitation. J Biochem 134:765–772

    Article  PubMed  CAS  Google Scholar 

  • Mein (1833) Ăœber die Darstellung des Atropins in weiĂŸen Krystallen. Ann Pharm 6:67–72

    Article  Google Scholar 

  • Menzella HG, Reid R, Carney JR, Chandran SS, Reisinger SJ, Patel KG, Hopwood DA, Santi DV (2005) Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol 23:1171–1176

    Article  PubMed  CAS  Google Scholar 

  • Mi Q, Cui B, Silva GL, Lantvit D, Lim E, Chai H, You M, Hollingshead MG, Mayo JG, Kinghorn AD, Pezzuto JM (2001) Pervilleine A, a novel tropane alkaloid that reverses the multidrug-resistance phenotype. Cancer Res 61:4030–4037

    PubMed  CAS  Google Scholar 

  • Moyano E, Fornale S, Palazon J, Cusido R, Bonfill M, Morales C, Pinol MT (1999) Effect of Agrobacterium rhizogenes T-DNA on alkaloid production in Solanaceae plants. Phytochemistry 52:1287–1292

    Article  CAS  Google Scholar 

  • Moyano E, Fornale S, Palazon J, Cusido RM, Bagni N, Pinol MT (2002) Alkaloid production in Duboisia hybrid hairy root cultures overexpressing the pmt gene. Phytochemistry 59:697–702

    Article  PubMed  CAS  Google Scholar 

  • Moyano E, Jouhikainen K, Tammela P, Palazon J, Cusido RM, Pinol MT, Teeri TH, Oksman-Caldentey KM (2003) Effect of pmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus. J Exp Bot 54:203–211

    Article  PubMed  CAS  Google Scholar 

  • Oksman-Caldentey KM, InzĂ© D (2004) Plant cell factories in the post genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9:433–440

    Article  PubMed  CAS  Google Scholar 

  • Patterson S, O’Hagan D (2002) Biosynthetic studies on the tropane alkaloid hyoscyamine in Datura stramonium; hyoscyamine is stable to in vivo oxidation and is not derived from littorine via a vicinal interchange process. Phytochemistry 61:323–329

    Article  PubMed  CAS  Google Scholar 

  • Pitta-Alvarez SI, Giulietti AM (1999) Influence of chitosan, acetic acid and citric acid on growth and tropane alkaloid production in transformed roots of Brugmansia candida. Plant Cell Tissue Organ Cult 59:31–38

    Article  CAS  Google Scholar 

  • Pitta-Alvarez SI, Spollansky TC, Giulietti AM (2000) The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme Microb Technol 26:252–258

    Article  PubMed  CAS  Google Scholar 

  • Portsteffen A, Dräger B, Nahrstedt A (1992) Two tropinone reducing enzymes from Datura stramonium transformed root cultures. Phytochemistry 31:1135–1138

    Article  CAS  Google Scholar 

  • Richter U, Rothe G, Fabian AK, Rahfeld B, Dräger B (2005) Overexpression of tropinone reductases alters alkaloid composition in Atropa belladonna root cultures. J Exp Bot 56:645–652

    Article  PubMed  CAS  Google Scholar 

  • Rischer H, Oresic M, Seppänen-Laakso T, Katajamaa M, Lammertyn F, Ardiles-Diaz W, Van Montagu M, InzĂ© D, Oksman-Caldentey KM, Goossens A (2006) Gene-to-metabolite networks for terpenoid indole alkaloid in Catharanthus roseus cells. Proc Natl Acad Sci USA 100:8595–8600

    Google Scholar 

  • Robins RJ (1998) The application of root cultures to problems of biological chemistry. Nat Prod Rep 15:549–570

    Article  CAS  Google Scholar 

  • Robins RJ, Walton NJ (1993) The biosynthesis of tropane alkaloids. In: Cordell GA (ed) The alkaloids: chemistry and pharmacology, vol 44. Academic, San Diego, pp 115–187

    Google Scholar 

  • Robins RJ, Bachmann P, Woolley JG (1994) Biosynthesis of hyoscyamine involves an intramolecular rearrangement of littorine. J Chem Soc Perkin Trans 1:615–619

    Article  Google Scholar 

  • Robins RJ, Chesters NCJE, O’Hagan D, Parr AJ, Walton NJ, Woolley JG (1995) The biosynthesis of hyoscyamine: The process by which littorine rearranges to hyoscyamine. J Chem Soc Perkin Trans 1:481–485

    Article  Google Scholar 

  • Robins RJ, Abraham TW, Parr AJ, Eagles J, Walton NJ (1997) The biosynthesis of tropane alkaloids in Datura stramonium: the identity of the intermediates between N-methylpyrrolinium salt and tropinone. J Am Chem Soc 119:10929–10934

    Article  CAS  Google Scholar 

  • Robinson R (1917) A synthesis of tropinone. J Chem Soc Trans 111:762–768

    Article  CAS  Google Scholar 

  • Robinson R (1928) The relationship of some complex natural products to the simple sugars and amino acids. Proc Univ Durham Philos Soc 8:14–19

    CAS  Google Scholar 

  • Robinson R (1955) The structural relations of natural products. Clarendon, Oxford

    Google Scholar 

  • Rothe G, Dräger B (2002) Tropane alkaloids – metabolic response to carbohydrate signal in root cultures of Atropa belladonna. Plant Sci 163:979–985

    Article  CAS  Google Scholar 

  • Rothe G, Garske U, Dräger B (2001) Calystegines in root cultures of Atropa belladonna respond to sucrose, not to elicitation. Plant Sci 160:1043–1053

    Article  PubMed  CAS  Google Scholar 

  • Rothe G, Hachiya A, Yamada Y, Hashimoto T, Dräger B (2003) Alkaloids in plants and root cultures of Atropa belladonna overexpressing putrescine N-methyltransferase. J Exp Bot 54:2065–2070

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Ishise T, Shimomura K, Kobayashi T, Matsubayashi Y, Sakagami Y, Umetsu H, Kamada H (2002) Effects of phytosulfokine-alpha on growth and tropane alkaloid production in transformed roots of Atropa belladonna. Plant Growth Regul 36:87–90

    Article  CAS  Google Scholar 

  • Schmidt E (1892) Ăœber Scopolamin. Arch Pharm 230:207

    Article  Google Scholar 

  • SevĂ³n N, Hiltunen R, Oksman-Caldentey K-M (1992) Chitosan increases hyoscyamine content in hairy root cultures of Hyoscyamus muticus. Pharm Pharmacol Lett 2:96–99

    Google Scholar 

  • SevĂ³n N, Oksman-Caldentey KM (2002) Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids. Planta Med 68:859–868

    Article  PubMed  Google Scholar 

  • Suzuki K, Yamada Y, Hashimoto T (1999) Expression of Atropa belladonna putrescine N-methyltransferase gene in root pericycle. Plant Cell Physiol 40:289–297

    PubMed  CAS  Google Scholar 

  • Walton NJ, Robins RJ, Peerless ACJ (1990) Enzymes of N-methylputrescine biosynthesis in relation to hyoscyamine formation in transformed root cultures of Datura stramonium and Atropa belladonna. Planta 182:136–141

    Article  CAS  Google Scholar 

  • Willstätter R (1896) Ăœber das Tropinon. Chem Ber 1896:393–403

    Google Scholar 

  • Yoshimatsu K, Sudo H, Kamada H, Kiuchi F, Kikuchi Y, Sawada J, Shimomura K (2004) Tropane alkaloid production and shoot regeneration in hairy and adventitious root cultures of Duboisia myoporoides x D. leichhardtii hybrid. Biol Pharm Bull 27:1261–1265

    Article  PubMed  CAS  Google Scholar 

  • Yun DJ, Hashimoto T, Yamada Y (1992) Metabolic engineering of medicinal plants: transgenic Atropa belladonna with an improved alkaloid composition. Proc Natl Acad Sci USA 89:11799–11803

    Article  PubMed  CAS  Google Scholar 

  • Zayed R, Wink M (2004) Induction of tropane alkaloid formation in transformed root cultures of Brugmansia suavolens (Solanaceae). Z Naturforsch C 59:863–867

    PubMed  CAS  Google Scholar 

  • Zhang JH, Ding R, Chai Y, Bonfill M, Moyano E, Oksman-Caldentey KM, Xu T, Pi Y, Wang Z, Zhang H, Kai G, Liao Z, Sun X, Tang K (2004) Engineering tropane alkaloid biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci USA 101:6786–6791

    Article  PubMed  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Henbane, Belladonna, Datura and Duboisia. In: Pua, EC., Davey, M. (eds) Transgenic Crops VI. Biotechnology in Agriculture and Forestry, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71711-9_10

Download citation

Publish with us

Policies and ethics