Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Public Key Cryptography

PKC 2007: Public Key Cryptography – PKC 2007 pp 118–133Cite as

  1. Home
  2. Public Key Cryptography – PKC 2007
  3. Conference paper
Optimistic Fair Exchange in a Multi-user Setting

Optimistic Fair Exchange in a Multi-user Setting

  • Yevgeniy Dodis1,
  • Pil Joong Lee2 &
  • Dae Hyun Yum2 
  • Conference paper
  • 2037 Accesses

  • 45 Citations

  • 3 Altmetric

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4450)

Abstract

This paper addresses the security of optimistic fair exchange in a multi-user setting. While the security of public key encryption and public key signature schemes in a single-user setting guarantees the security in a multi-user setting, we show that the situation is different in the optimistic fair exchange. First, we show how to break, in the multi-user setting, an optimistic fair exchange scheme provably secure in the single-user setting. This example separates the security of optimistic fair exchange between the single-user setting and the multi-user setting. We then define the formal security model of optimistic fair exchange in the multi-user setting, which is the first complete security model of optimistic fair exchange in the multi-user setting. We prove the existence of a generic construction meeting our multi-user security based on one-way functions in the random oracle model and trapdoor one-way permutations in the standard model. Finally, we revisit two well-known methodologies of optimistic fair exchange, which are based on the verifiably encrypted signature and the sequential two-party multisignature, respectively. Our result shows that these paradigms remain valid in the multi-user setting.

Keywords

  • Signature Scheme
  • Random Oracle
  • Random Oracle Model
  • Fair Exchange
  • Common Reference String

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  1. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In: ACM CCS, pp. 7–17. ACM Press, New York (1997)

    Google Scholar 

  2. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures (extended abstract). In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  3. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures. IEEE Journal on Selected Areas in Communication 18(4), 593–610 (2000)

    CrossRef  Google Scholar 

  4. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting: Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  5. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM CCS, pp. 62–73. ACM Press, New York (1993)

    Google Scholar 

  6. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  7. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

    Google Scholar 

  8. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) Advances in Cryptology – EUROCRPYT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  9. Camenisch, J., Damgård, I.: Verifiable encryption, group encryption, and their applications to separable group signatures and signature sharing schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  10. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  11. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)

    Google Scholar 

  12. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

    Google Scholar 

  13. Dodis, Y., Lee, P.J., Yum, D.H.: Optimistic fair exchagne in a multi-user setting. IACR ePrint Archive (2007), http://eprint.iacr.org/

  14. Dodis, Y., Reyzin, L.: Breaking and repairing optimistic fair exchange from PODC 2003. In: 2003 ACM Workshop on Digital Rights Management, pp. 47–54. ACM Press, New York (2003)

    CrossRef  Google Scholar 

  15. Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544. Springer, Heidelberg (1990)

    Google Scholar 

  16. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: The 22nd STOC, pp. 416–426. ACM Press, New York (1990)

    Google Scholar 

  17. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    Google Scholar 

  18. Galbraith, S.D., Malone-Lee, J., Smart, N.P.: Public key signatures in the multi-user setting. Inf. Process. Lett. 83(5), 263–266 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)

    CrossRef  MATH  MathSciNet  Google Scholar 

  20. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

    CrossRef  MATH  MathSciNet  Google Scholar 

  22. Guillou, L.C., Quisquater, J.-J.: A “paradoxical” indentity-based signature scheme resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 216–231. Springer, Heidelberg (1990)

    Google Scholar 

  23. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: The 21st STOC, pp. 33–43. ACM Press, New York (1989)

    Google Scholar 

  24. Park, J.M., Chong, E.K.P., Siegel, H.J.: Constructing fair-exchange protocols for e-commerce via distributed computation of RSA signatures. In: PODC 2003, pp. 172–181. ACM Press, New York (2003)

    CrossRef  Google Scholar 

  25. Pass, R.: On deniability in the common reference string and random oracle model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Heidelberg (2003)

    Google Scholar 

  26. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996)

    Google Scholar 

  27. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)

    Google Scholar 

  28. Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: The 22nd STOC, pp. 387–394. ACM Press, New York (1990)

    Google Scholar 

  29. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: The 40th FOCS, pp. 543–553. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  30. Santis, A.D., Persiano, G.: Zero-knowledge proofs of knowledge without interaction. In: The 33rd FOCS, pp. 427–436. IEEE Computer Society Press, Los Alamitos (1992)

    Google Scholar 

  31. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

    Google Scholar 

  32. Zhu, H., Bao, F.: Stand-alone and setup-free verifiably committed signatures. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 159–173. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Computer Science, New York University, NY, USA

    Yevgeniy Dodis

  2. Department of Electronic and Electrical Eng., POSTECH, Pohang, Korea

    Pil Joong Lee & Dae Hyun Yum

Authors
  1. Yevgeniy Dodis
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Pil Joong Lee
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Dae Hyun Yum
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Tatsuaki Okamoto Xiaoyun Wang

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Dodis, Y., Lee, P.J., Yum, D.H. (2007). Optimistic Fair Exchange in a Multi-user Setting. In: Okamoto, T., Wang, X. (eds) Public Key Cryptography – PKC 2007. PKC 2007. Lecture Notes in Computer Science, vol 4450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71677-8_9

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-71677-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71676-1

  • Online ISBN: 978-3-540-71677-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature