Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Public Key Cryptography

PKC 2007: Public Key Cryptography – PKC 2007 pp 61–75Cite as

  1. Home
  2. Public Key Cryptography – PKC 2007
  3. Conference paper
Cryptanalysis of Group-Based Key Agreement Protocols Using Subgroup Distance Functions

Cryptanalysis of Group-Based Key Agreement Protocols Using Subgroup Distance Functions

  • Dima Ruinskiy1,
  • Adi Shamir1 &
  • Boaz Tsaban1 
  • Conference paper
  • 1896 Accesses

  • 7 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4450)

Abstract

We introduce a new approach for cryptanalysis of key agreement protocols based on noncommutative groups. Our approach uses functions that estimate the distance of a group element to a given subgroup. We test it against the Shpilrain-Ushakov protocol, which is based on Thompson’s group F, and show that it can break about half the keys within a few seconds on a single PC.

Keywords

  • Key agreement
  • Cryptanalysis
  • Thompson’s group
  • Shpilrain-Ushakov
  • Subgroup distance function

Chapter PDF

Download to read the full chapter text

References

  1. Anshel, I., Anshel, M., Goldfeld, D.: An algebraic method for public-key cryptography. Mathematical Research Letters 6, 287–291 (1999)

    MATH  MathSciNet  Google Scholar 

  2. Artin, E.: Theory of Braids. Annals of Mathematics 48, 127–136 (1947)

    CrossRef  MathSciNet  Google Scholar 

  3. Cannon, J.W., Floyd, W.J., Parry, W.R.: Introductory notes on Richard Thompson’s groups. L’Enseignement Mathematique 42(2), 215–256 (1996)

    MATH  MathSciNet  Google Scholar 

  4. Garber, D., Kaplan, S., Teicher, M., Tsaban, B., Vishne, U.: Length-based conjugacy search in the Braid group. Contemporary Mathematics 418, 75–87 (2006)

    MathSciNet  Google Scholar 

  5. Garber, D., Kaplan, S., Teicher, M., Tsaban, B., Vishne, U.: Probabilistic solutions of equations in the braid group. Advances in Applied Mathematics 35, 323–334 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Hughes, J., Tannenbaum, A.: Length-based attacks for certain group based encryption rewriting systems. In: Workshop SECI02 Sécurité de la Communication sur Internet (2002)

    Google Scholar 

  7. Ko, K.H., Lee, S.J., Cheon, J.H., Han, J.W., Kang, J., Park, C.: New Public-Key Cryptosystem Using Braid Groups. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 166–183. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  8. Matucci, F.: The Shpilrain-Ushakov Protocol for Thompson’s Group F is always breakable (2006), arxiv.org/math/0607184

  9. Ruinskiy, D., Shamir, A., Tsaban, B.: Length-based cryptanalysis: The case of Thompson’s group. arxiv.org/cs/0607079

  10. Shpilrain, V.: Assessing security of some group based cryptosystems. Contemporary Mathematics 360, 167–177 (2004)

    MathSciNet  Google Scholar 

  11. Shpilrain, V., Ushakov, A.: The conjugacy search problem in public key cryptography: unnecessary and insufficient. Applicable Algebra in Engineering, Communication and Computing 17, 291–302 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Shpilrain, V., Ushakov, A.: Thompson’s group and public key cryptography. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 151–164. Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. The Weizmann Institute of Science, Rehovot, Israel

    Dima Ruinskiy, Adi Shamir & Boaz Tsaban

Authors
  1. Dima Ruinskiy
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Adi Shamir
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Boaz Tsaban
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Tatsuaki Okamoto Xiaoyun Wang

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Ruinskiy, D., Shamir, A., Tsaban, B. (2007). Cryptanalysis of Group-Based Key Agreement Protocols Using Subgroup Distance Functions. In: Okamoto, T., Wang, X. (eds) Public Key Cryptography – PKC 2007. PKC 2007. Lecture Notes in Computer Science, vol 4450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71677-8_5

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-71677-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71676-1

  • Online ISBN: 978-3-540-71677-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature