Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Public Key Cryptography

PKC 2007: Public Key Cryptography – PKC 2007 pp 43–60Cite as

  1. Home
  2. Public Key Cryptography – PKC 2007
  3. Conference paper
On the Generic and Efficient Constructions of Secure Designated Confirmer Signatures

On the Generic and Efficient Constructions of Secure Designated Confirmer Signatures

  • Guilin Wang1,
  • Joonsang Baek1,
  • Duncan S. Wong2 &
  • …
  • Feng Bao1 
  • Conference paper
  • 1977 Accesses

  • 8 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4450)

Abstract

For controlling the public verifiability of ordinary digital signatures, designated confirmer signature (DCS) schemes were introduced by Chaum at Eurocrypt 1994. In such schemes, a signature can be verified only with the help of a semi-trusted third party, called the designated confirmer. The confirmer can further selectively convert individual designated confirmer signatures into ordinary signatures so that anybody can check their validity. In the last decade, a number of DCS schemes have been proposed. However, most of those schemes are either inefficient or insecure. At Asiacrypt 2005, Gentry, Molnar and Ramzan presented a generic transformation to convert any signature scheme into a DCS scheme, and proved the scheme is secure in their security model. Their DCS scheme not only has efficient instantiations but also gets rid of both random oracles and general zero-knowledge proofs. In this paper, we first show that their DCS transformation does not meet the desired security requirements by identifying two security flaws. Then, we point out the reasons that cause those flaws and further propose a secure improvement to fix the flaws. Finally, we present a new generic and efficient DCS scheme without using any public key encryption and prove its security. To the best of our knowledge, this is the first secure DCS scheme that does not require public key encryption.

Keywords

  • Designated Confirmer Signature
  • Digital Signature
  • Fair Exchange

Chapter PDF

Download to read the full chapter text

References

  1. Asokan, N., Shoup, V., Waidner, M.: Optimistic Fair Exchange of Digital Signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  2. Asokan, N., Shoup, V., Waidner, M.: Optimistic Fair Exchange of Digital Signatures. IEEE Journal on Selected Areas in Communications 18(4), 591–606 (2000)

    CrossRef  Google Scholar 

  3. Ateniese, G.: Efficient Verifiable Encryption (and Fair Exchange) of Digital Signature. In: Proc. of ACM Conference on Computer and Communications Security (CCS ’99), pp. 138–146. ACM Press, New York (1999)

    CrossRef  Google Scholar 

  4. Bao, F., Deng, R.H., Mao, W.: Efficient and Practical Fair Exchange Protocols with Off-line TTP. In: Proc. of IEEE Symposium on Security and Privacy, pp. 77–85. IEEE Computer Society Press, Los Alamitos (1998)

    Google Scholar 

  5. Bellare, M., Rogaway, P.: Random Oracles Are Practical: A Paradigm for Designing Efficient Protocols. In: Proc. of the 1st ACM Conf. on Computer and Communications Security (CCS ’93), pp. 62–73. ACM Press, New York (1993)

    CrossRef  Google Scholar 

  6. Boudot, F.: Efficient Proofs that a Committed Number Lies in an Interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  7. Boyar, J., Chaum, D., Damgard, I., Pedersen, T.: Convertible Undeniable Signatures. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 189–208. Springer, Heidelberg (1991)

    Google Scholar 

  8. Boyd, C., Foo, E.: Off-line Fair Payment Protocols Using Convertible Signatures. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 271–285. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  9. Camenisch, J., Stadler, M.: Efficient Group Signature Schemes for Large Groups (Extended Abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)

    Google Scholar 

  10. Camenisch, J., Michels, M.: Confirmer Signature Schemes Secure against Adaptive Adversaries. In: Deransart, P., Małuszyński, J. (eds.) Analysis and Visualization Tools for Constraint Programming. LNCS, vol. 1870, pp. 243–258. Springer, Heidelberg (2000)

    Google Scholar 

  11. Camenisch, J., Shoup, V.: Practical Verifiable Encryption and Decryption of Discrete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003), http://shoup.net/papers/

    Google Scholar 

  12. Chaum, D., van Antwerpen, H.: Undeniable Signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)

    Google Scholar 

  13. Chaum, D.: Designated Confirmer Signatures. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 86–91. Springer, Heidelberg (1995)

    CrossRef  Google Scholar 

  14. Chen, L.: Efficient Fair Exchange with Verifiable Confirmation of Signatures. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 286–299. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  15. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of Partial Knowledge and Simplied Design of Witness Hiding Protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

    Google Scholar 

  16. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure Against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

    Google Scholar 

  17. Cramer, R., Shoup, V.: Signature Schemes based on the Strong RSA Assumption. In: Proc. of the 6th ACM Conf. on Computer and Communications Security (CCS ’99), pp. 46–51. ACM Press, New York (1999)

    CrossRef  Google Scholar 

  18. Cramer, R., Damgård, I., MacKenzie, P.: Efficient Zero-Knowledge Proofs of Knowledge Without Intractability Assumptions. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 354–373. Springer, Heidelberg (2000)

    Google Scholar 

  19. Damgård, I.: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  20. Dolev, D., Dwork, D., Naor, N.: Non-meallleable cryptography. SIAM Journal on Computing 30(2), 391–437 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Galbraith, S.D., Mao, W.: Invisibility and Anonymity of Undeniable and Confirmer Signatures. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 80–97. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  22. Garay, J., Jakobsson, M., MacKenzie, P.: Abuse-free Optimistic Contract Signing. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 449–466. Springer, Heidelberg (1999)

    Google Scholar 

  23. Gennaro, R., Halevi, S., Rabin, T.: Secure Hash-and-Sign Signatures without the Random Oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–139. Springer, Heidelberg (1999)

    Google Scholar 

  24. Gennaro, R.: Multi-trapdoor Commitments and Their Applications to Proofs of Knowledge Secure Under Concurrent Man-in-the-Middle Attacks. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 220–236. Springer, Heidelberg (2004)

    Google Scholar 

  25. Gentry, C., Molnar, D., Ramzan, Z.: Efficient Designated Confirmer Signatures without Random Oracles or General Zero-knowledge Proofs. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 662–681. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  26. Goldreich, O., Kahan, A.: How to Construct Constant-Round Zeroknowledge Proof Systems for NP. Journal of Cryptology 9(3), 167–189 (1996)

    CrossRef  MATH  MathSciNet  Google Scholar 

  27. Goldwasser, S., Micali, S., Rivest, R.: A Digital Signature Scheme Secure against Adaptive Chosen-message Attack. SIAM Journal of Computing 17(2), 281–308 (1988)

    CrossRef  MATH  MathSciNet  Google Scholar 

  28. Goldwasser, S., Waisbard, E.: Transformation of Digital Signature Schemes into Designated Confirmer Signature Schemes. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 77–100. Springer, Heidelberg (2004)

    Google Scholar 

  29. Kurosawa, K., Heng, S.-H.: 3-Move Undeniable Signature Scheme. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 181–197. Springer, Heidelberg (2005)

    Google Scholar 

  30. Michels, M., Stadler, M.: Generic Constructions for Secure and Efficient Confirmer Signature Schemes. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 406–421. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  31. Michels, M., Stadler, M.: Efficient Convertible Undeniable Signature Schemes. In: Proc. of 4th Annual Workshop on Selected Areas in Cryptography (SAC ’97), pp. 231–244 (1997)

    Google Scholar 

  32. Monnerat, J., Vaudenay, S.: Chaum’s Designated Confirmer Signature Revisited. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 164–178. Springer, Heidelberg (2005)

    Google Scholar 

  33. Okamoto, T.: Designated Confirmer Signatures and Public Key Encryption Are Equivalent. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 61–74. Springer, Heidelberg (1994)

    Google Scholar 

  34. Paillier, P.: Public Key Cryptosystems based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Google Scholar 

  35. Pedersen, T.P.: Non-interactive and Information-theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)

    Google Scholar 

  36. Schnorr, C.P.: Efficient Signature Generation by Smart Cards. Journal of Cryptology 4(3), 161–174 (1991)

    CrossRef  MATH  MathSciNet  Google Scholar 

  37. Wang, G., Baek, J., Wong, D.S., Bao, F.: On the Generic and Efficient Constructions of Secure Designated Confirmer Signatures. Full version of this paper is available from the authors or Cryptology ePrint Archive

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute for Infocomm Research (I2R), 21 Heng Mui Keng Terrace, 119613, Singapore

    Guilin Wang, Joonsang Baek & Feng Bao

  2. City University of Hong Kong, Hong Kong

    Duncan S. Wong

Authors
  1. Guilin Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Joonsang Baek
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Duncan S. Wong
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Feng Bao
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Tatsuaki Okamoto Xiaoyun Wang

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Wang, G., Baek, J., Wong, D.S., Bao, F. (2007). On the Generic and Efficient Constructions of Secure Designated Confirmer Signatures. In: Okamoto, T., Wang, X. (eds) Public Key Cryptography – PKC 2007. PKC 2007. Lecture Notes in Computer Science, vol 4450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71677-8_4

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-71677-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71676-1

  • Online ISBN: 978-3-540-71677-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature