Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Public Key Cryptography

PKC 2007: Public Key Cryptography – PKC 2007 pp 442–457Cite as

  1. Home
  2. Public Key Cryptography – PKC 2007
  3. Conference paper
Fast Batch Verification of Multiple Signatures

Fast Batch Verification of Multiple Signatures

  • Jung Hee Cheon1 &
  • Jeong Hyun Yi2 
  • Conference paper
  • 2152 Accesses

  • 26 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4450)

Abstract

We propose an efficient batch verification of multiple signatures generated by different signers as well as a single signer. We first introduce a method to generate width-w Non-Adjacent Forms (w-NAFs) uniformly. We then propose a batch verification algorithm of exponentiations using w-NAF exponents, and apply this to batch verification for the modified DSA and ECDSA signatures. The performance analysis shows that our proposed method is asymptotically seven and four times as fast as individual verification in case of a single signer and multiple signers, respectively. Further, the proposed algorithm can be generalized into τ-adic w-NAFs over Koblitz curves and requires asymptotically only six elliptic curve additions per each signature for batch verification of the modified ECDSA signatures by a single singer. Our result is the first one to efficiently verify multiple signatures by multiple signers that can introduce much wider applications.

Keywords

  • Batch verification
  • exponentiation
  • sparse exponent
  • non-adjacent form
  • elliptic curve
  • Koblitz curve
  • Frobenius map

Chapter PDF

Download to read the full chapter text

References

  1. Abe, M.: Mix-Networks on Permutation Networks. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 258–273. Springer, Heidelberg (1999)

    Google Scholar 

  2. Antipa, A., Brown, D., Gallant, R., Lambert, R., Struik, R., Vanstone, S.: Accelerated Verification of ECDSA Signatures. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 307–318. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  3. Brickell, E., Gordon, D., McCurley, K., Wilson, D.: Fast Exponentiation with Precomputation. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 200–207. Springer, Heidelberg (1993)

    CrossRef  Google Scholar 

  4. Bellare, M., Garay, J., Rabin, T.: Fast Batch Verification for Modular Exponentiation and Digital Signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 236–250. Springer, Heidelberg (1998), Full version is available via http://www-cse.ucsd.edu/users/mihir

    CrossRef  Google Scholar 

  5. Boyd, C., Pavlovski, C.: Attacking and Repairing Batch Verification Schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 58–71. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  6. Brown, M., Hankerson, D., López, J., Menezes, A.: Software Implementation of the NIST Elliptic Curves over Primes Fields. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 250–265. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  7. Cheon, J., Lee, D.: Use of Sparse and/or Complex Exponents in Batch Verification of Exponentiations. IEEE. T. on Computers 55(12) (2006)

    Google Scholar 

  8. Digital Signature Standard (DSS) (DSA, RSA, and ECDSA algorithms). Available at http://csrc.nist.gov/cryptval/dss.htm

  9. Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA), ANSI X9.62, approved January 7 (1999)

    Google Scholar 

  10. Feldman, P.: A Practical Scheme for Non-interactive Verifiable Secret Sharing. In: IEEE Symposium on Foundations of Computer Science, pp. 427–437. IEEE Computer Society Press, Los Alamitos (1987)

    Google Scholar 

  11. Fiat, A.: Batch RSA. Computing Methods in Applied Sciences and Engineering. International Symposium, Versailles, December 17-21, 1973 10(2), 175–185 (1997), A preliminary version appeared in: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 175–185. Springer, Heidelberg (1990)

    CrossRef  MathSciNet  Google Scholar 

  12. Hankerson, D., Hernandez, J., Menezes, A.: Software Implementation of Elliptic Curve Cryptography Over Binary Fields. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 1–24. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  13. Harn, L.: Batch Verifying Multiple DSA-Type Digital Signatures. Electronic Letters 34(9), 870–871 (1995)

    CrossRef  Google Scholar 

  14. Lim, C.H., Lee, P.J.: More Flexible Exponentiation with Precomputation. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer, Heidelberg (1994)

    Google Scholar 

  15. M’Raithi, D., Naccache, D.: Batch Exponentiation - A Fast DLP based Signature Generation Strategy. In: ACM Conference on Computer and Communications Security, pp. 58–61. ACM Press, New York (1996)

    Google Scholar 

  16. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and Integrity in Outsourced Databases. In: Proc. of ISOC Symposium on Network and Distributed Systems Security (NDSS’04) (2004)

    Google Scholar 

  17. Muir, J., Stinson, D.: Minimality and Other Properties of the Width-w Non-Adjacent Form. Mathematics of Computation 75, 369–384 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  18. Naccache, D., M’Raithi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A be Improved? Complexity trade-offs with the Digital Signature Standard. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 77–85. Springer, Heidelberg (1995)

    CrossRef  Google Scholar 

  19. Solinas, J.: An Improved Algorithm for Arithmetic on a Family of Elliptic Curves. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 357–371. Springer, Heidelberg (1997), Full version is available at http://www.cacr.math.uwaterloo.ca/techreports/

    Google Scholar 

  20. Solinas, J.: Efficient Arithmetic on Elliptic Curves. Design, Codes and Cryptography 19(3), 195–249 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Yen, S., Laih, C.: Improved Digital Signature suitable for Batch Veriffication. IEEE Trans. on Computers 44(7), 957–959 (1995)

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. ISaC and Dept. of Mathematics, Seoul National University, Republic of Korea

    Jung Hee Cheon

  2. Communication and Networking Lab, Samsung Advanced Institute of Technology, Republic of Korea

    Jeong Hyun Yi

Authors
  1. Jung Hee Cheon
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jeong Hyun Yi
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Tatsuaki Okamoto Xiaoyun Wang

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Cheon, J.H., Yi, J.H. (2007). Fast Batch Verification of Multiple Signatures. In: Okamoto, T., Wang, X. (eds) Public Key Cryptography – PKC 2007. PKC 2007. Lecture Notes in Computer Science, vol 4450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71677-8_29

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-71677-8_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71676-1

  • Online ISBN: 978-3-540-71677-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature