Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Public Key Cryptography

PKC 2007: Public Key Cryptography – PKC 2007 pp 426–441Cite as

  1. Home
  2. Public Key Cryptography – PKC 2007
  3. Conference paper
Efficient Pseudorandom Generators Based on the DDH Assumption

Efficient Pseudorandom Generators Based on the DDH Assumption

  • Reza Rezaeian Farashahi1,2,
  • Berry Schoenmakers1 &
  • Andrey Sidorenko1 
  • Conference paper
  • 2011 Accesses

  • 25 Citations

  • 3 Altmetric

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4450)

Abstract

A family of pseudorandom generators based on the decisional Diffie-Hellman assumption is proposed. The new construction is a modified and generalized version of the Dual Elliptic Curve generator proposed by Barker and Kelsey. Although the original Dual Elliptic Curve generator is shown to be insecure, the modified version is provably secure and very efficient in comparison with the other pseudorandom generators based on discrete log assumptions.

Our generator can be based on any group of prime order provided that an additional requirement is met (i.e., there exists an efficiently computable function that in some sense enumerates the elements of the group). Two specific instances are presented. The techniques used to design the instances, for example, the new probabilistic randomness extractor are of independent interest for other applications.

Keywords

  • Elliptic Curve
  • Discrete Logarithm
  • Seed Length
  • Discrete Logarithm Problem
  • Quadratic Residue

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  1. Barker, E., Kelsey, J.: Recommendation for random number generation using deterministic random bit generators. NIST Special Publication (SP) 800-90 (December 2005)

    Google Scholar 

  2. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo-random bits. SIAM Journal on Computing 13(4), 850–864 (1984)

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. Brown, D.: Conjectured security of the ANSI-NIST Elliptic Curve RNG. Cryptology ePrint Archive, Report 2006 /117 (2006), http://eprint.iacr.org/

  4. Chevassut, O., Fouque, P., Gaudry, P., Pointcheval, D.: The Twist-AUgmented Technique for Key Exchange. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 410–426. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  5. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing, 167–226 (2003)

    Google Scholar 

  6. Fischlin, R., Schnorr, C.P.: Stronger security proofs for RSA and Rabin bits. Journal of Cryptology 13(2), 221–244 (2000)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Fouque, P., Pointcheval, D., Stern, J., Zimmer, S.: Hardness of distinguishing the MSB or LSB of secret keys in Diffie-Hellman schemes. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 240–251. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  8. Gennaro, R.: An improved pseudo-random generator based on the discrete logarithm problem. Journal of Cryptology 18(2), 91–110 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

  9. Gennaro, R., Krawczyk, H., Rabin, T.: Secure hashed Diffie-Hellman over non-DDH groups, Cryptology ePrint Archive, Report 2004/099 (2004), http://eprint.iacr.org/

  10. Gjøsteen, K.: Comments on Dual-EC-DRBG/NIST SP 800-90, Draft, December 2005 (March 2006), http://www.math.ntnu.no/~kristiag/drafts/dual-ec-drbg-comments.pdf

  11. Goldreich, O.: Foundations of cryptography. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  12. Haitner, I., Harnik, D., Reingold, O.: On the power of the randomized iterate. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 22–40. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  13. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: Construction of a pseudo-random generator from any one-way function. SIAM Journal on Computing 28, 1364–1396 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Jiang, S.: Efficient primitives from exponentiation in ℤ p . In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 259–270. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  15. Juels, A., Jakobsson, M., Shriver, E., Hillyer, B.K.: How to turn loaded dice into fair coins. IEEE Transactions on Information Theory 46(3), 911–921 (2000)

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. Kaliski, B.S.: Elliptic curves and cryptography: A pseudorandom bit generator and other tools, Ph.D. thesis, MIT, Cambridge, MA, USA (1988)

    Google Scholar 

  17. Knuth, D.E.: Seminumerical algorithms, vol. 3, 3rd edn. Addison-Wesley, Reading (1997)

    Google Scholar 

  18. Lenstra, A.K., Verheul, E.R.: The XTR public key system. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 1–19. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  19. Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. Journal of Cryptology 14(4), 255–293 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Luby, M.: Pseudorandomness and cryptographic applications. Princeton University Press, Princeton (1994)

    Google Scholar 

  21. Maurer, U.M.: Towards the equivalence of breaking the Diffie-Hellman protocol and computing discrete algorithms. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 271–281. Springer, Heidelberg (1994)

    Google Scholar 

  22. Maurer, U.M., Wolf, S.: Diffie-Hellman. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996)

    Google Scholar 

  23. Menezes, A., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Transactions on Information Theory 39(5), 1639–1646 (1993)

    CrossRef  MathSciNet  MATH  Google Scholar 

  24. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. Journal of the ACM 51(2), 231–262 (2004)

    CrossRef  MathSciNet  Google Scholar 

  25. Patel, S., Sundaram, G.S.: An efficient discrete log pseudo random generator. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 304–317. Springer, Heidelberg (1998)

    Google Scholar 

  26. Pollard, J.M.: Kangaroos, monopoly and discrete logarithms. Journal of Cryptology 13(4), 437–447 (2000)

    CrossRef  MathSciNet  MATH  Google Scholar 

  27. Schoenmakers, B., Sidorenko, A.: Cryptanalysis of the Dual Elliptic Curve pseudorandom generator, Cryptology ePrint Archive, Report 2006 /190 (2006), http://eprint.iacr.org/

  28. Shaltiel, R.: Recent developments in explicit constructions of extractors. Bulletin of the EATCS 77, 67–95 (2002)

    MathSciNet  MATH  Google Scholar 

  29. Steinfeld, R., Pieprzyk, J., Wang, H.: On the provable security of an efficient RSA-based pseudorandom generator, Cryptology ePrint Archive, Report 2006 /206 (2006), http://eprint.iacr.org/

  30. Wolf, S.: Information-theoretically and computationally secure key agreement in cryptography, Ph.D. thesis, ETH Zurich (1999)

    Google Scholar 

  31. Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Dept. of Mathematics and Computer Science, TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

    Reza Rezaeian Farashahi, Berry Schoenmakers & Andrey Sidorenko

  2. Dept. of Mathematical Sciences, Isfahan University of Technology, P.O. Box 85145 Isfahan, Iran

    Reza Rezaeian Farashahi

Authors
  1. Reza Rezaeian Farashahi
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Berry Schoenmakers
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Andrey Sidorenko
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Tatsuaki Okamoto Xiaoyun Wang

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Farashahi, R.R., Schoenmakers, B., Sidorenko, A. (2007). Efficient Pseudorandom Generators Based on the DDH Assumption. In: Okamoto, T., Wang, X. (eds) Public Key Cryptography – PKC 2007. PKC 2007. Lecture Notes in Computer Science, vol 4450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71677-8_28

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-71677-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71676-1

  • Online ISBN: 978-3-540-71677-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature