Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Public Key Cryptography

PKC 2007: Public Key Cryptography – PKC 2007 pp 377–392Cite as

  1. Home
  2. Public Key Cryptography – PKC 2007
  3. Conference paper
Verifiable Shuffle of Large Size Ciphertexts

Verifiable Shuffle of Large Size Ciphertexts

  • Jens Groth1 &
  • Steve Lu2 
  • Conference paper
  • 1986 Accesses

  • 37 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4450)

Abstract

A shuffle is a permutation and rerandomization of a set of ciphertexts. Among other things, it can be used to construct mix-nets that are used in anonymization protocols and voting schemes. While shuffling is easy, it is hard for an outsider to verify that a shuffle has been performed correctly. We suggest two efficient honest verifier zero-knowledge (HVZK) arguments for correctness of a shuffle. Our goal is to minimize round-complexity and at the same time have low communicational and computational complexity.

The two schemes we suggest are both 3-move HVZK arguments for correctness of a shuffle. We first suggest a HVZK argument based on homomorphic integer commitments, and improve both on round complexity, communication complexity and computational complexity in comparison with state of the art. The second HVZK argument is based on homomorphic commitments over finite fields. Here we improve on the computational complexity and communication complexity when shuffling large ciphertexts.

Keywords

  • Shuffle
  • homomorphic commitment
  • homomorphic encryption
  • mix-net
  • honest verifier zero-knowledge

Chapter PDF

Download to read the full chapter text

References

  1. Abe, M.: Mix-networks on permutation networks. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 258–273. Springer, Heidelberg (1999)

    Google Scholar 

  2. Abe, M., Hoshino, F.: Remarks on mix-network based on permutation networks. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 317–324. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  3. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Vardi, M.Y., Gottlob, G. (eds.) ICDT 1995. LNCS, vol. 893, pp. 174–187. Springer, Heidelberg (1995)

    Google Scholar 

  4. Damgård, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  5. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

    CrossRef  Google Scholar 

  6. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)

    Google Scholar 

  7. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  8. Furukawa, J.: Efficient and verifiable shuffling and shuffle-decryption. IEICE Transactions 88-A(1), 172–188 (2005)

    Google Scholar 

  9. Groth, J., Lu, S.: Comparison of shuffle arguments (2007), http://www.brics.dk/~jg/ShuffleComparisons.xls

  10. Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to security microprocessor minimizing both transmission and memory. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988)

    Google Scholar 

  11. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  12. Groth, J.: Cryptography in subgroups of ℤ . In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 50–65. Springer, Heidelberg (2005)

    Google Scholar 

  13. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. Cryptology ePrint Archive, Report 2005/246 (2005), http://eprint.iacr.org/

  14. Neff, A.C.: A verifiable secret shuffle and its application to e-voting. In: CCS ’01, pp. 116–125 (2001), Full paper available at http://www.votehere.net/vhti/documentation/egshuf.pdf

  15. Nguyen, L., Safavi-Naini, R., Kurosawa, K.: Verifiable shuffles: A formal model and a paillier-based efficient construction with provable security. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 61–75. Springer, Heidelberg (2004)

    Google Scholar 

  16. Nguyen, L., Safavi-Naini, R., Kurosawa, K.: A provably secure and effcient verifiable shuffle based on a variant of the paillier cryptosystem. Journal of Universal Computer Science 11(6), 986–1010 (2005)

    MathSciNet  Google Scholar 

  17. Onodera, T., Tanaka, K.: A verifiable secret shuffle of paillier’s encryption scheme. Tokyo Institute of Technology, research report C-193 (2004)

    Google Scholar 

  18. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  19. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–239. Springer, Heidelberg (1999)

    Google Scholar 

  20. Peng, K., Boyd, C., Dawson, E.: Simple and efficient shuffling with provable correctness and ZK privacy. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 188–204. Springer, Heidelberg (2005)

    Google Scholar 

  21. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)

    Google Scholar 

  22. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptology 4(3), 161–174 (1991)

    CrossRef  MATH  MathSciNet  Google Scholar 

  23. Wikström, D., Groth, J.: An adaptively secure mix-net without erasures. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 276–287. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  24. Wikström, D.: A sender verifiable mix-net and a new proof of a shuffle. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 273–292. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  25. Wikström, D.: A sender verifiable mix-net and a new proof of a shuffle. Cryptology ePrint Archive, Report 2005/137 (2005), http://eprint.iacr.org/

  26. Wikström, D.: Private Communication (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. UCLA, Computer Science Department,  

    Jens Groth

  2. UCLA, Math Department,  

    Steve Lu

Authors
  1. Jens Groth
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Steve Lu
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Tatsuaki Okamoto Xiaoyun Wang

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Groth, J., Lu, S. (2007). Verifiable Shuffle of Large Size Ciphertexts. In: Okamoto, T., Wang, X. (eds) Public Key Cryptography – PKC 2007. PKC 2007. Lecture Notes in Computer Science, vol 4450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71677-8_25

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-71677-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71676-1

  • Online ISBN: 978-3-540-71677-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature