Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Public Key Cryptography

PKC 2007: Public Key Cryptography – PKC 2007 pp 343–360Cite as

  1. Home
  2. Public Key Cryptography – PKC 2007
  3. Conference paper
Multiparty Computation for Interval, Equality, and Comparison Without Bit-Decomposition Protocol

Multiparty Computation for Interval, Equality, and Comparison Without Bit-Decomposition Protocol

  • Takashi Nishide1,2 &
  • Kazuo Ohta1 
  • Conference paper
  • 3243 Accesses

  • 118 Citations

  • 9 Altmetric

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4450)

Abstract

Damgård et al. [11] showed a novel technique to convert a polynomial sharing of secret a into the sharings of the bits of a in constant rounds, which is called the bit-decomposition protocol. The bit-decomposition protocol is a very powerful tool because it enables bit-oriented operations even if shared secrets are given as elements in the field. However, the bit-decomposition protocol is relatively expensive.

In this paper, we present a simplified bit-decomposition protocol by analyzing the original protocol. Moreover, we construct more efficient protocols for a comparison, interval test and equality test of shared secrets without relying on the bit-decomposition protocol though it seems essential to such bit-oriented operations. The key idea is that we do computation on secret a with c and r where c = a + r, c is a revealed value, and r is a random bitwise-shared secret. The outputs of these protocols are also shared without being revealed.

The realized protocols as well as the original protocol are constant-round and run with less communication rounds and less data communication than those of [11]. For example, the round complexities are reduced by a factor of approximately 3 to 10.

Keywords

  • Multiparty Computation
  • Secret Sharing
  • Bitwise Sharing

Chapter PDF

Download to read the full chapter text

References

  1. Algesheimer, J., Camenisch, J., Shoup, V.: Efficient computation modulo a shared secret with application to the generation of shared safe-prime products. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417–432. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  2. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in a constant number of rounds of interaction. In: Proc. ACM Symposium on Principles of Distributed Computing, pp. 201–209. ACM Press, New York (1989)

    Google Scholar 

  3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorem for non-cryptographic fault-tolerant distributed computation. In: 20th Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM Press, New York (1988)

    Google Scholar 

  4. Bogetoft, P., Damgård, I., Jakobsen, T., Nielsen, K., Pagter, J., Toft, T.: A practical implementation of secure auctions based on multiparty integer computation. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142–147. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  5. Chandra, A.K., Fortune, S., Lipton, R.J.: Lower bounds for constant depth circuits for prefix problems. In: Díaz, J. (ed.) Automata, Languages and Programming. LNCS, vol. 154, pp. 109–117. Springer, Heidelberg (1983)

    CrossRef  Google Scholar 

  6. Chandra, A.K., Fortune, S., Lipton, R.J.: Unbounded fan-in circuits and associative functions. In: Proc. 15th ACM Symposium on Theory of Computing, pp. 52–60. ACM Press, New York (1983)

    Google Scholar 

  7. Chaum, D., Crêpeau, C., Damgård, I.: Multi-party unconditionally secure protocols. In: Proc. ACM STOC’88, pp. 11–19. ACM Press, New York (1988)

    Google Scholar 

  8. Cramer, R., Damgård, I.: Secure distributed linear algebra in a constant number of rounds. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 119–136. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  9. Cramer, R., Damgård, I., Ishai, Y.: Share conversion, pseudorandom secret sharing and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005)

    Google Scholar 

  10. Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  11. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  12. Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  13. Damgård, I., Nielsen, J.B.: Universally composable efficient multiparty computation from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)

    Google Scholar 

  14. Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  15. From, S.L., Jakobsen, T.: Secure multi-party computation on integers. Master’s Thesis (2006), http://www.daimi.au.dk/~mas/thesis/index.html

  16. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty computations with applications to threshold cryptography. In: Proc. 17th ACM Symposium on Principles of Distributed Computing, pp. 101–110. ACM Press, New York (1998)

    Google Scholar 

  17. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a complete theorem for protocols with honest majority. In: Proc. 19th STOC, pp. 218–229 (1987)

    Google Scholar 

  18. Jordan, H., Alaghband, G.: Fundamentals of parallel processing. Prentice-Hall, Englewood Cliffs (2003)

    Google Scholar 

  19. Ladner, R., Fischer, M.: Parallel prefix computation. Journal of the Association for Computing Machinery 27, 831–838 (1980)

    MATH  MathSciNet  Google Scholar 

  20. Ong, E., Kubiatowicz, J.: Optimizing robustness while generating shared secret safe primes. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 120–137. Springer, Heidelberg (2005)

    Google Scholar 

  21. Schoenmakers, B., Tuyls, P.: Efficient binary conversion for Paillier encrypted values. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 522–537. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  22. Shamir, A.: How to share a secret. Communications of ACM 22(11), 612–613 (1979)

    CrossRef  MATH  MathSciNet  Google Scholar 

  23. Toft, T.: Secure integer computation with applications in economy. http://www.aicis.alexandra.dk/uk/projects/scet_demo.htm#Tof05 , Available from http://www.daimi.au.dk/~tomas/publications/progress.pdf

  24. Toft, T.:An efficient, unconditionally secure equality test for secret shared values. Workshop on Models for Cryptographic Protocols (MCP 2006), Abstract available from http://www.daimi.au.dk/~buus/mcp2006/talks/T.pdf

  25. Yao, A.: Protocols for secure computation. In: Proc. 23rd FOCS, pp. 160–164 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Information and Communication Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka Chofu-shi, Tokyo 182-8585, Japan

    Takashi Nishide & Kazuo Ohta

  2. Hitachi Software Engineering Co., Ltd.; 4-12-7 Higashi-Shinagawa Shinagawa-ku, Tokyo, 140-0002, Japan

    Takashi Nishide

Authors
  1. Takashi Nishide
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Kazuo Ohta
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Tatsuaki Okamoto Xiaoyun Wang

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Nishide, T., Ohta, K. (2007). Multiparty Computation for Interval, Equality, and Comparison Without Bit-Decomposition Protocol. In: Okamoto, T., Wang, X. (eds) Public Key Cryptography – PKC 2007. PKC 2007. Lecture Notes in Computer Science, vol 4450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71677-8_23

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-71677-8_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71676-1

  • Online ISBN: 978-3-540-71677-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature