Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Public Key Cryptography

PKC 2007: Public Key Cryptography – PKC 2007 pp 330–342Cite as

  1. Home
  2. Public Key Cryptography – PKC 2007
  3. Conference paper
Practical and Secure Solutions for Integer Comparison

Practical and Secure Solutions for Integer Comparison

  • Juan Garay1,
  • Berry Schoenmakers2 &
  • José Villegas2 
  • Conference paper
  • 2672 Accesses

  • 67 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4450)

Abstract

Yao’s classical millionaires’ problem is about securely determining whether x > y, given two input values x,y, which are held as private inputs by two parties, respectively. The output x > y becomes known to both parties.

In this paper, we consider a variant of Yao’s problem in which the inputs x,y as well as the output bit x > y are encrypted. Referring to the framework of secure n-party computation based on threshold homomorphic cryptosystems as put forth by Cramer, Damgård, and Nielsen at Eurocrypt 2001, we develop solutions for integer comparison, which take as input two lists of encrypted bits representing x and y, respectively, and produce an encrypted bit indicating whether x > y as output. Secure integer comparison is an important building block for applications such as secure auctions.

In this paper, our focus is on the two-party case, although most of our results extend to the multi-party case. We propose new logarithmic-round and constant-round protocols for this setting, which achieve simultaneously very low communication and computational complexities. We analyze the protocols in detail and show that our solutions compare favorably to other known solutions.

Keywords

  • Millionaires’ problem
  • secure multi-party computation
  • homomorphic encryption

Chapter PDF

Download to read the full chapter text

References

  1. Blake, I., Kolesnikov, V.: Strong conditional oblivious transfer and computing on intervals. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 515–529. Springer, Heidelberg (2004)

    Google Scholar 

  2. Brandt, F.: Efficient cryptographic protocol design based on distributed El Gamal encryption. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 32–47. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  3. Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  4. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

    Google Scholar 

  5. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  6. Damgård, I., Nielsen, J.: Improved non-committing encryption schemes based on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 433–451. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  7. Damgård, I., Nielsen, J.B.: Universally composable efficient multiparty computation from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)

    Google Scholar 

  8. Di Crescenzo, G.: Private Selective Payment Protocols. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 72–89. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  9. Fischlin, M.: A cost-effective pay-per-multiplication comparison method for millionaires. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 457–471. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  10. Garay, J., MacKenzie, P., Yang, K.: Strengthening zero-knowledge protocols using signatures. In: Biham, E. (ed.) Advances in Cryptology – EUROCRPYT 2003. LNCS, vol. 2656, pp. 177–194. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  11. Groth, J.: A verifable secret shuffle of homomorphic encryptions. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  12. Knuth, D.E.: The Art of Computer Programming, vol. 1: Fundamental Algorithms, 3rd edn. Addison-Wesley, Reading (1997)

    MATH  Google Scholar 

  13. Lin, H., Tzeng, W.: An efficient solution to the millionaires’ problem based on homomorphic encryption. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 456–466. Springer, Heidelberg (2005)

    Google Scholar 

  14. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme—a practical solution to the implementation of a voting booth. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403. Springer, Heidelberg (1995)

    Google Scholar 

  15. Schoenmakers, B., Tuyls, P.: Practical two-party computation based on the conditional gate. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 119–136. Springer, Heidelberg (2004)

    Google Scholar 

  16. Schoenmakers, B., Tuyls, P.: Efficient binary conversion for Paillier encryptions. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 522–537. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  17. Yao, A.: Protocols for secure computations. In: Proc. 23rd IEEE Symposium on Foundations of Computer Science (FOCS ’82), pp. 160–164. IEEE Computer Society Press, Los Alamitos (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Bell Labs – Alcatel-Lucent, 600 Mountain Ave., Murray Hill, NJ 07974,  

    Juan Garay

  2. Dept. of Mathematics and Computing Science, TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

    Berry Schoenmakers & José Villegas

Authors
  1. Juan Garay
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Berry Schoenmakers
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. José Villegas
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Tatsuaki Okamoto Xiaoyun Wang

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Garay, J., Schoenmakers, B., Villegas, J. (2007). Practical and Secure Solutions for Integer Comparison. In: Okamoto, T., Wang, X. (eds) Public Key Cryptography – PKC 2007. PKC 2007. Lecture Notes in Computer Science, vol 4450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71677-8_22

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-71677-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71676-1

  • Online ISBN: 978-3-540-71677-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature