Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Public Key Cryptography

PKC 2007: Public Key Cryptography – PKC 2007 pp 315–329Cite as

  1. Home
  2. Public Key Cryptography – PKC 2007
  3. Conference paper
Multi-bit Cryptosystems Based on Lattice Problems

Multi-bit Cryptosystems Based on Lattice Problems

  • Akinori Kawachi1,
  • Keisuke Tanaka1 &
  • Keita Xagawa1 
  • Conference paper
  • 2416 Accesses

  • 38 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4450)

Abstract

We propose multi-bit versions of several single-bit cryptosystems based on lattice problems, the error-free version of the Ajtai-Dwork cryptosystem by Goldreich, Goldwasser, and Halevi [CRYPTO ’97], the Regev cryptosystems [JACM 2004 and STOC 2005], and the Ajtai cryptosystem [STOC 2005]. We develop a universal technique derived from a general structure behind them for constructing their multi-bit versions without increase in the size of ciphertexts. By evaluating the trade-off between the decryption errors and the hardness of underlying lattice problems, it is shown that our multi-bit versions encrypt O(logn)-bit plaintexts into ciphertexts of the same length as the original ones with reasonable sacrifices of the hardness of the underlying lattice problems. Our technique also reveals an algebraic property, named pseudohomomorphism, of the lattice-based cryptosystems.

Keywords

  • Lattice Problem
  • Security Proof
  • Encryption Function
  • Decryption Error
  • Universal Technique

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  1. Ajtai, M.: Generating hard instances of lattice problems. Electronic Colloquium on Computational Complexity (ECCC) 3(007) (1996)

    Google Scholar 

  2. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: STOC ’97, 284–293 (1997), See also ECCC TR96-065

    Google Scholar 

  3. Goldreich, O., Goldwasser, S., Halevi, S.: Eliminating decryption errors in the Ajtai-Dwork cryptosystem. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 105–111. Springer, Heidelberg (1997), See also ECCC TR097-018

    Google Scholar 

  4. Regev, O.: New lattice based cryptographic constructions. In: STOC 2003, pp. 407–416 (2003)

    Google Scholar 

  5. Ajtai, M.: Representing hard lattices with O(n logn) bits. In: STOC 2005, pp. 94–103 (2005)

    Google Scholar 

  6. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC 2005, pp. 84–93 (2005)

    Google Scholar 

  7. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997)

    Google Scholar 

  8. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosystem. In: Buhler, J.P. (ed.) Algorithmic Number Theory. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  9. Micciancio, D.: Improving lattice based cryptosystems using the Hermite normal form. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 126–145. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  10. Nguyen, P.Q.: Analysis and improvements of NTRU encryption paddings. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 210–225. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  11. Howgrave-Graham, N., Nguyen, P.Q., Pointcheval, D., Proos, J., Silverman, J.H., Singer, A., Whyte, W.: The impact of decryption failures on the security of NTRU encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 226–246. Springer, Heidelberg (2003)

    Google Scholar 

  12. Nguyen, P.Q.: Cryptanalysis of the Goldreich-Goldwasser-Halevi cryptosystem from Crypto ’97. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 288–304. Springer, Heidelberg (1999)

    Google Scholar 

  13. Gentry, C.: Key recovery and message attacks on NTRU-composite. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 182–194. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  14. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In: FOCS 2004, pp. 372–381 (2004)

    Google Scholar 

  15. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions from worst-case complexity assumptions. Electronic Colloquium on Computational Complexity (ECCC) 11(095) (2004)

    Google Scholar 

  16. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  17. Nguyen, P.Q., Stern, J.: Cryptanalysis of the Ajtai-Dwork cryptosystem. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 223–242. Springer, Heidelberg (1998)

    Google Scholar 

  18. Rappe, D.: Homomorphic Cryptosystems and Their Applications. PhD thesis, University of Dortmund (2004), Also available at, http://eprint.iacr.org/2006/001

  19. Goldwasser, S., Kharchenko, D.: Proof of plaintext knowledge for the Ajtai-Dwork cryptosystem. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 529–555. Springer, Heidelberg (2005)

    Google Scholar 

  20. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: a cryptographic perspective. Kluwer Academic Publishers, Boston (2002)

    MATH  Google Scholar 

  21. Cai, J.Y.: A new transference theorem in the geometry of numbers and new bounds for Ajtai’s connection factor. Discrete Applied Mathematics 126(1), 9–31 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  22. Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58(301), 13–30 (1963)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, W8-55, 2-12-1 Ookayama Meguro-ku, Tokyo 152-8552, Japan

    Akinori Kawachi, Keisuke Tanaka & Keita Xagawa

Authors
  1. Akinori Kawachi
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Keisuke Tanaka
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Keita Xagawa
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Tatsuaki Okamoto Xiaoyun Wang

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Kawachi, A., Tanaka, K., Xagawa, K. (2007). Multi-bit Cryptosystems Based on Lattice Problems. In: Okamoto, T., Wang, X. (eds) Public Key Cryptography – PKC 2007. PKC 2007. Lecture Notes in Computer Science, vol 4450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71677-8_21

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-71677-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71676-1

  • Online ISBN: 978-3-540-71677-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature