Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Public Key Cryptography

PKC 2007: Public Key Cryptography – PKC 2007 pp 298–314Cite as

  1. Home
  2. Public Key Cryptography – PKC 2007
  3. Conference paper
Parallel Key-Insulated Public Key Encryption Without Random Oracles

Parallel Key-Insulated Public Key Encryption Without Random Oracles

  • Benoît Libert1,
  • Jean-Jacques Quisquater1 &
  • Moti Yung2 
  • Conference paper
  • 2078 Accesses

  • 17 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4450)

Abstract

Key-insulated cryptography is a crucial technique for protecting private keys. To strengthen the security of key-insulated protocols, Hanaoka, Hanaoka and Imai recently introduced the idea of parallel key-insulated encryption (PKIE) where distinct physically-secure devices (called helpers) are independently used in key updates. Their motivation was to reduce the risk of exposure for helpers by decreasing the frequency of their connections to insecure environments. Hanaoka et al. showed that it was non-trivial to achieve a PKIE scheme fitting their model and proposed a construction based on the Boneh-Franklin identity-based encryption (IBE) scheme. The security of their system was only analyzed in the idealized random oracle model. In this paper, we provide a fairly efficient scheme which is secure in the standard model (i.e. without random oracles). To do so, we first show the existence of a relation between PKIE and the notion of aggregate signatures (AS) suggested by Boneh et al. We then describe our random oracle-free construction using bilinear maps. Thus, our contributions are both on the concrete side, namely the first realization of parallel key-insulated encryption without the random oracle idealization, and on the conceptual side revealing the relationships between two seemingly unrelated primitives.

Keywords

  • parallel key-insulated encryption
  • standard model
  • pairings

Chapter PDF

Download to read the full chapter text

References

  1. Anderson, R.: Two Remarks on Public Key Cryptology (Invited lecture). In: ACM Conference on Computer and Communications Security, ACM Press, New York (1997)

    Google Scholar 

  2. Anh, P.T.L., Hanaoka, Y., Hanaoka, G., Matsuura, K., Imai, H.: Reducing the Spread of Damage of Key Exposures in Key-Insulated Encryption. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, Springer, Heidelberg (2006)

    Google Scholar 

  3. Bellare, M., Miner, S.: A Forward-Secure Digital Signature Scheme. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999)

    Google Scholar 

  4. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM Press, New York (1993)

    CrossRef  Google Scholar 

  5. Bellare, M., Palacio, A.: Protecting against Key Exposure: Strongly Key-Insulated Encryption with Optimal Threshold. Cryptology ePrint Archive: Report 2002/064 (2002)

    Google Scholar 

  6. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

    Google Scholar 

  7. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with Constant Size Ciphertext. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

    Google Scholar 

  8. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  9. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) Advances in Cryptology – EUROCRPYT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  10. Boneh, D., Katz, J.: Improved Efficiency for CCA-Secure Cryptosystems Built Using Identity-Based Encryption. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 87–103. Springer, Heidelberg (2005)

    Google Scholar 

  11. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  12. Boyen, X., Mei, Q., Waters, B.: Direct Chosen Ciphertext Security from Identity-Based Techniques. In: ACM CCS’05, pp. 320–329. ACM Press, New York (2005)

    Google Scholar 

  13. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. Journal of the ACM 51(4), 557–594 (2004)

    CrossRef  MathSciNet  Google Scholar 

  14. Canetti, R., Halevi, S., Katz, J.: A forward secure public key encryption scheme. In: Biham, E. (ed.) Advances in Cryptology – EUROCRPYT 2003. LNCS, vol. 2656, pp. 254–271. Springer, Heidelberg (2003)

    Google Scholar 

  15. Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

    Google Scholar 

  16. Chow, S.S., Kwong Hui, L.C., Yiu, S.M., Chow, K.P.: Secure Hierarchical Identity Based Signature and Its Application. In: Lopez, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 480–494. Springer, Heidelberg (2004)

    Google Scholar 

  17. Coron, J.S., Naccache, D.: Boneh et al.’s k-Element Aggregate Extraction Assumption Is Equivalent to the Diffie-Hellman Assumption. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 392–397. Springer, Heidelberg (2003)

    Google Scholar 

  18. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal of Computing 33, 167–226 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. Dodis, Y., Franklin, M., Katz, J., Miyaji, A., Yung, M.: Intrusion-Resilient Public-Key Encryption. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 19–32. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  20. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-Insulated Public Key Cryptosystems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  21. Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong key-insulated signature schemes. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 130–144. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  22. Dodis, Y., Katz, J.: Chosen-Ciphertext Security of Multiple Encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)

    Google Scholar 

  23. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 53–68. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  24. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  25. Granger, R., Smart, N.P.: On Computing Products of Pairings. Cryptology ePrint Archive: Report 2006/172 (2006)

    Google Scholar 

  26. Hanaoka, G., Hanaoka, Y., Imai, H.: Parallel Key-Insulated Public Key Encryption. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 105–122. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  27. Itkis, G., Reyzin, L.: SiBIR: Signer-Base Intrusion-Resilient Signatures. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 499–514. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  28. Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. In: Bosma, W. (ed.) Algorithmic Number Theory. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  29. Katz, J.: A Forward-Secure Public-Key Encryption Scheme. Cryptology ePrint Archive: Report 2002/060 (2002)

    Google Scholar 

  30. Kiltz, E.: On the Limitations of the Spread of an IBE-to-PKE Transformation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 274–289. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  31. Kiltz, E.: Chosen-Ciphertext Secure Identity-Based Encryption in the Standard Model with short Ciphertexts. Cryptology ePrint Archive: Report 2006/122 (2006)

    Google Scholar 

  32. Kiltz, E., Galindo, D.: Direct Chosen-Ciphertext Secure Identity-Based Key Encapsulation without Random Oracles. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 336–347. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  33. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential Aggregate Signatures and Multisignatures Without Random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  34. Paterson, K.G., Schuldt, J.C.N.: Efficient Identity-based Signatures Secure in the Standard Model. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 207–222. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  35. Shoup, V.: Using Hash Functions as a Hedge against Chosen Ciphertext Attack. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–288. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  36. Shamir, A.: Identity based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)

    CrossRef  Google Scholar 

  37. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)

    Google Scholar 

  38. Yao, D., Fazio, N., Dodis, Y., Lysyanskaya, A.: ID-based encryption for complex hierarchies with applications to forward security and broadcast encryption. In: ACM CCS’04, pp. 354–363. ACM Press, New York (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. UCL, Microelectronics Laboratory, Crypto Group, Belgium

    Benoît Libert & Jean-Jacques Quisquater

  2. RSA Labs and Columbia University, USA

    Moti Yung

Authors
  1. Benoît Libert
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jean-Jacques Quisquater
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Moti Yung
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Tatsuaki Okamoto Xiaoyun Wang

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Libert, B., Quisquater, JJ., Yung, M. (2007). Parallel Key-Insulated Public Key Encryption Without Random Oracles. In: Okamoto, T., Wang, X. (eds) Public Key Cryptography – PKC 2007. PKC 2007. Lecture Notes in Computer Science, vol 4450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71677-8_20

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-71677-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71676-1

  • Online ISBN: 978-3-540-71677-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature