Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Public Key Cryptography

PKC 2007: Public Key Cryptography – PKC 2007 pp 16–30Cite as

  1. Home
  2. Public Key Cryptography – PKC 2007
  3. Conference paper
A Direct Anonymous Attestation Scheme for Embedded Devices

A Direct Anonymous Attestation Scheme for Embedded Devices

  • He Ge1 &
  • Stephen R. Tate2 
  • Conference paper
  • 2134 Accesses

  • 35 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4450)

Abstract

Direct anonymous attestation (DAA) is an anonymous authentication scheme adopted by the Trusted Computing Group in its specifications for trusted computing platforms. This paper presents an efficient construction that implements all anonymous authentication features specified in DAA, including authentication with total anonymity, authentication with variable anonymity, and rogue TPM tagging. The current DAA construction is mainly targeted for powerful devices such as personal computers, and their corresponding application areas, but is not entirely suitable for embedded devices with limited computing capabilities (e.g., cell phones or hand-held PDAs). We propose a new construction with more efficient sign and verify protocols, making it more attractive for embedded devices. We prove that the new construction is secure under the strong RSA assumption and the decisional Diffie-Hellman assumption.

Keywords

  • Direct Anonymous Attestation
  • Group signature
  • Privacy
  • Authentication
  • Trusted Computing Platform
  • Cryptographic Protocol

Chapter PDF

Download to read the full chapter text

References

  1. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  2. Baric, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997)

    Google Scholar 

  3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient procotols. In: First ACM Conference On computer and Communication Security, pp. 62–73. ACM Press, New York (1993)

    CrossRef  Google Scholar 

  4. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

    Google Scholar 

  5. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Proc. of the 11th ACM Conference on Computer and Communications Security (CCS 2004), pp. 168–177. ACM Press, New York (2004)

    CrossRef  Google Scholar 

  6. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM Conference on Computer and Communications Security, pp. 132–145. ACM Press, New York (2004)

    Google Scholar 

  7. Camenisch, J., Groth, J.: Group signatures: Better efficiency and new theoretical aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133. Springer, Heidelberg (2005)

    Google Scholar 

  8. Camenisch, J., Michels, M.: A group signature scheme based on an RSA-variants. Technical Report RS-98-27, BRICS, University of Aarhus (Nov. 1998)

    Google Scholar 

  9. Camenisch, J., Stadler, M.: Efficient group signature schemems for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)

    Google Scholar 

  10. Camenisch, J., Stadler, M.: A group signature scheme with improved efficiency. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 160–174. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  11. Chan, A., Frankel, Y., Tsiounis, Y.: Easy come - easy go divisible cash. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 561–574. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  12. Chaum, D., van Heyst, E.: Group signature. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 390–407. Springer, Heidelberg (1991)

    Google Scholar 

  13. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

    CrossRef  Google Scholar 

  14. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    Google Scholar 

  15. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)

    Google Scholar 

  16. Fujisaki, E., Okamoto, T.: A practical and provably secure scheme for publicly verifable secret sharing and its applications. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 32–46. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  17. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004)

    Google Scholar 

  18. Mao, W.: Modern Cryptography: Theory & Practice. Prentice Hall PTR, Englewood Cliffs (2004)

    Google Scholar 

  19. Menezes, A.J., Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography, pp. 613–619. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  20. Shamir, A.: On the generation of cryptograpically strong psedorandom sequences. ACM Transaction on computer systems 1 (1983)

    Google Scholar 

  21. TCG. http://www.trustedcomputinggroup.org

  22. TCG. TPM V1.2 Specification Changes: A summary of changes with respect to the v1.1b TPM specification (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Microsoft Corporation, One Microsoft Way, Redmond 98005,  

    He Ge

  2. Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203,  

    Stephen R. Tate

Authors
  1. He Ge
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Stephen R. Tate
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Tatsuaki Okamoto Xiaoyun Wang

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Ge, H., Tate, S.R. (2007). A Direct Anonymous Attestation Scheme for Embedded Devices. In: Okamoto, T., Wang, X. (eds) Public Key Cryptography – PKC 2007. PKC 2007. Lecture Notes in Computer Science, vol 4450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71677-8_2

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-71677-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71676-1

  • Online ISBN: 978-3-540-71677-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature