Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Public Key Cryptography

PKC 2007: Public Key Cryptography – PKC 2007 pp 282–297Cite as

  1. Home
  2. Public Key Cryptography – PKC 2007
  3. Conference paper
Chosen-Ciphertext Secure Key-Encapsulation Based on Gap Hashed Diffie-Hellman

Chosen-Ciphertext Secure Key-Encapsulation Based on Gap Hashed Diffie-Hellman

  • Eike Kiltz1 
  • Conference paper
  • 2340 Accesses

  • 76 Citations

  • 3 Altmetric

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4450)

Abstract

We propose a practical key encapsulation mechanism with a simple and intuitive design concept. Security against chosen-ciphertext attacks can be proved in the standard model under a new assumption, the Gap Hashed Diffie-Hellman (GHDH) assumption. The security reduction is tight and simple.

Secure key encapsulation, combined with an appropriately secure symmetric encryption scheme, yields a hybrid public-key encryption scheme which is secure against chosen-ciphertext attacks. The implied encryption scheme is very efficient: compared to the previously most efficient scheme by Kurosawa and Desmedt [Crypto 2004] it has 128 bits shorter ciphertexts, between 25-50% shorter public/secret keys, and it is slightly more efficient in terms of encryption/decryption speed. Furthermore, our scheme enjoys (the option of) public verifiability of the ciphertexts and it inherits all practical advantages of secure hybrid encryption.

Keywords

  • Hash Function
  • Encryption Scheme
  • Cryptographic Hash Function
  • Cryptology ePrint Archive
  • Challenge Ciphertext

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 143–158. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  2. Bellare, M., Kohno, T., Shoup, V.: Stateful public-key cryptosystems: How to encrypt with one 160-bit exponentiation. In: Juels, A., Wright, R.N., Vimercati, S. (eds.) ACM CCS 06, Oct. / Nov. 2006, pp. 380–389. ACM Press, New York (2006)

    CrossRef  Google Scholar 

  3. Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg (2004)

    Google Scholar 

  4. Bernstein, D.J.: Pippenger’s exponentiation algorithm (2001), Available from http://cr.yp.to/papers.html

  5. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

    Google Scholar 

  6. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

    Google Scholar 

  7. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. SIAM Journal on Computing 5(36), 915–942 (2006)

    MathSciNet  Google Scholar 

  8. Boneh, D., Franklin, M.K.: Identity based encryption from the Weil pairing. SIAM Journal on Computing 32(3), 586–615 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-based techniques. In: Atluri, V., Meadows, C., Juels, A. (eds.) ACM CCS 05, Nov. 2005, pp. 320–329. ACM Press, New York (2005)

    CrossRef  Google Scholar 

  10. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

    Google Scholar 

  11. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing 33(1), 167–226 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Farashahi, R.R., Schoenmakers, B., Sidorenko, A.: Efficient pseudorandom generators based on the DDH assumption. In: PKC 2007. LNCS, vol. 4450, pp. 426–441. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  14. Hofheinz, D., Herranz, J., Kiltz, E.: The Kurosawa-Desmedt key encapsulation is not chosen-ciphertext secure. Cryptology ePrint Archive, Report 2006/207 (2006), http://eprint.iacr.org/

  15. Hofheinz, D., Kiltz, E.: Concise Hybrid Encryption. Manuscript (2006)

    Google Scholar 

  16. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  17. Kiltz, E.: On the limitations of the spread of an IBE-to-PKE transformation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 274–289. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  18. Kiltz, E.: Chosen-ciphertext secure key-encapsulation based on Gap Hashed Diffie-Hellman (full version). Cryptology ePrint Archive (2007), http://eprint.iacr.org/

  19. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (2004)

    Google Scholar 

  20. Okamoto, T., Pointcheval, D.: The gap-problems: A new class of problems for the security of cryptographic schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  21. Phan, D.H., Pointcheval, D.: About the security of ciphers (semantic security and pseudo-random permutations). In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 182–197. Springer, Heidelberg (2004)

    Google Scholar 

  22. Pippenger, N.: On the evaluation of powers and related problems. In: Proceedings of FOCS 1976, pp. 258–263 (1976)

    Google Scholar 

  23. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)

    Google Scholar 

  24. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. CWI Amsterdam, The Netherlands

    Eike Kiltz

Authors
  1. Eike Kiltz
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Tatsuaki Okamoto Xiaoyun Wang

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Kiltz, E. (2007). Chosen-Ciphertext Secure Key-Encapsulation Based on Gap Hashed Diffie-Hellman. In: Okamoto, T., Wang, X. (eds) Public Key Cryptography – PKC 2007. PKC 2007. Lecture Notes in Computer Science, vol 4450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71677-8_19

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-71677-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71676-1

  • Online ISBN: 978-3-540-71677-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature