Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Public Key Cryptography

PKC 2007: Public Key Cryptography – PKC 2007 pp 266–281Cite as

  1. Home
  2. Public Key Cryptography – PKC 2007
  3. Conference paper
ℓ-Invertible Cycles for \(\mathcal{M}\)ultivariate \(\mathcal{Q}\)uadratic (\({\mathcal{MQ}}\)) Public Key Cryptography

ℓ-Invertible Cycles for \(\mathcal{M}\)ultivariate \(\mathcal{Q}\)uadratic (\({\mathcal{MQ}}\)) Public Key Cryptography

  • Jintai Ding1,
  • Christopher Wolf2 &
  • Bo-Yin Yang3 
  • Conference paper
  • 2033 Accesses

  • 28 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4450)

Abstract

We propose a new basic trapdoor \(\mathcal{\ell}\)IC (ℓ-Invertible Cycles) of the mixed field type for \(\mathcal{M}\)ultivariate \(\mathcal{Q}\)uadratic public key cryptosystems. This is the first new basic trapdoor since the invention of Unbalanced Oil and Vinegar in 1997. \(\mathcal{\ell}\)IC can be considered an extended form of the well-known Matsumoto-Imai Scheme A (also MIA or C  ∗ ), and share some features of stagewise triangular systems. However \({\mathcal{\ell}}\)IC has very distinctive properties of its own. In practice, \({\mathcal{\ell}}\)IC is much faster than MIA, and can even match the speed of single-field \({\mathcal{MQ}}\) schemes.

Keywords

  • Public Key
  • \({\mathcal{MQ}}\)
  • Trapdoor
  • Encryption
  • Signing

Chapter PDF

Download to read the full chapter text

References

  1. Akkar, M.-L., Courtois, N.T., Duteuil, R., Goubin, L.: A fast and secure implementation of SFlash. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 267–278. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  2. Ioannidis, J., Keromytis, A.D., Yung, M. (eds.): ACNS 2005. LNCS, vol. 3531. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  3. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations. In: Proceedings of the International Conference on Polynomial System Solving, pp. 71–74 (2004) (Previously appeared as INRIA report RR-5049)

    Google Scholar 

  4. Bardet, M., Faugère, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic expansion of the degree of regularity for semi-regular systems of equations. In: Gianni, P. (ed.) MEGA 2005, Sardinia, Italy (2005)

    Google Scholar 

  5. Courtois, N., Goubin, L., Meier, W., Tacier, J.-D.: Solving underdefined systems of multivariate quadratic equations. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 211–227. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  6. Courtois, N., Goubin, L., Patarin, J.: Quartz: Primitive specification (second revised version). Submissions, Quartz (October 2001), https://www.cosic.esat.kuleuven.be/nessie

  7. Courtois, N., Goubin, L., Patarin, J.: Sflash: Primitive specification (second revised version). Submissions, Sflash (2002), https://www.cosic.esat.kuleuven.be/nessie

  8. Courtois, N.T., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000), http://www.minrank.org/xlfull.pdf

    CrossRef  Google Scholar 

  9. Stinson, D.R. (ed.): CRYPTO 1993. LNCS, vol. 773. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  10. Coppersmith, D., Stern, J., Vaudenay, S.: Attacks on the birational permutation signature schemes. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 435–443. Springer, Heidelberg (1994)

    Google Scholar 

  11. Ding, J., Gower, J.E.: Inoculating multivariate schemes against differential attacks. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 290–301. Springer, Heidelberg (2006), http://eprint.iacr.org/2005/255

    CrossRef  Google Scholar 

  12. Ding, J., Gower, J.E., Schmidt, D., Wolf, C., Yin, Z.: Complexity Estimates for the F 4 Attack on the Perturbed Matsumoto-Imai Cryptosystem. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 262–277. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  13. Ding, J.: A new variant of the Matsumoto-Imai cryptosystem through perturbation. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 305–318. Springer, Heidelberg (2004)

    Google Scholar 

  14. Ding, J., Schmidt, D.: Cryptanalysis of HFEv and internal perturbation of HFE. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 288–301. Springer, Heidelberg (2005)

    Google Scholar 

  15. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005)

    Google Scholar 

  16. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F 4). Journal of Pure and Applied Algebra 139, 61–88 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F 5). In: International Symposium on Symbolic and Algebraic Computation — ISSAC 2002, July 2002, pp. 75–83. ACM Press, New York (2002)

    Google Scholar 

  18. Fell, H., Diffie, W.: Analysis of a public key approach based on polynomial substitution. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 340–349. Springer, Heidelberg (1986)

    Google Scholar 

  19. Felke, P.: On the affine transformations of HFE-cryptosystems and systems with branches. Cryptology ePrint Archive, Report 2004/367 (2004), http://eprint.iacr.org/2004/367 , version from 2004-12-17

  20. Fouque, P.-A., Granboulan, L., Stern, J.: Differential cryptanalysis for multivariate schemes. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 341–353. Springer, Heidelberg (2005)

    Google Scholar 

  21. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of Hidden Field Equation (HFE) cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003)

    Google Scholar 

  22. Fulton, W.: Algebraic curves. An introduction to algebraic geometry (a Reprint of 1969 original in Advanced Book Classics). Addison-Wesley Publishing, Redwood City (1989)

    MATH  Google Scholar 

  23. Fitzpatrick, P., Wolf, C.: Direct division in factor rings. Electronic Letters 38(21), 1253–1254 (2002), Extended version: http://eprint.iacr.org/2004/353

    CrossRef  Google Scholar 

  24. Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  25. Imai, H., Matsumoto, T.: Algebraic methods for constructing asymmetric cryptosystems. In: Calmet, J. (ed.) Algebraic Algorithms and Error-Correcting Codes. LNCS, vol. 229, pp. 108–119. Springer, Heidelberg (1986)

    Google Scholar 

  26. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999)

    Google Scholar 

  27. Lopéz, J., Dahab, R.: An overview of elliptic curve cryptography. Technical report, Institute of Computing, State University of Campinas, Brazil, 22nd of May 2000. http://citeseer.nj.nec.com/333066.html or http://www.dcc.unicamp.br/ic-tr-ftp/2000/00-14.ps.gz

  28. Computational Algebra Group, University of Sydney. The MAGMA Computational Algebra System for Algebra, Number Theory and Geometry. http://magma.maths.usyd.edu.au/magma/

  29. NESSIE: New European Schemes for Signatures, Integrity, and Encryption. Information Society Technologies programme of the European commission (IST-1999-12324). http://www.cryptonessie.org/ .

  30. Patarin, J.: Cryptanalysis of the Matsumoto and Imai public key scheme of Eurocrypt ’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)

    Google Scholar 

  31. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996), http://www.minrank.org/hfe.pdf

    Google Scholar 

  32. Patarin, J.: The oil and vinegar signature scheme. Presented at the Dagstuhl Workshop on Cryptography, September 1997. transparencies (1997)

    Google Scholar 

  33. Vaudenay, S. (ed.): PKC 2005. LNCS, vol. 3386. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  34. Pointcheval, D. (ed.): CT-RSA 2006. LNCS, vol. 3860. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  35. Shamir, A.: Efficient signature schemes based on birational permutations. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 1–12. Springer, Heidelberg (1994)

    Google Scholar 

  36. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509 (1997)

    CrossRef  MathSciNet  MATH  Google Scholar 

  37. Tsujii, S., Kurosawa, K., Itoh, T., Fujioka, A., Matsumoto, T.: A public key cryptosystem based on the difficulty of solving a system of nonlinear equations. ICICE Transactions (D) J69-D 12, 1963–1970 (1986)

    Google Scholar 

  38. Wolf, C., Braeken, A., Preneel, B.: Efficient cryptanalysis of RSE(2)PKC and RSSE(2)PKC. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 294–309. Springer, Heidelberg (2005), http://eprint.iacr.org/2004/237

    Google Scholar 

  39. Wang, L.-C., Hu, Y.-H., Lai, F., Chou, C.y., Yang, B.-Y.: Tractable rational map signature. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 244–257. Springer, Heidelberg (2005)

    Google Scholar 

  40. Wolf, C., Preneel, B.: Asymmetric cryptography: Hidden Field Equations. In: Neittaanmäki, P., Rossi, T., Korotov, S., Oñate, E., Périaux, J., Knörzer, D. (eds.) European Congress on Computational Methods in Applied Sciences and Engineering 2004, Jyväskylä University (2004), Extended version: http://eprint.iacr.org/2004/072/

  41. Wolf, C., Preneel, B.: Equivalent keys in HFE, C*, and variations. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 33–49. Springer, Heidelberg (2005), http://eprint.iacr.org/2004/360/

    CrossRef  Google Scholar 

  42. Wolf, C., Preneel, B.: Taxonomy of public key schemes based on the problem of multivariate quadratic equations. Cryptology ePrint Archive, Report 2005/077, 12th of May 2005. http://eprint.iacr.org/2005/077/

  43. Wang, L.-C., Yang, B.-Y., Hu, Y.-H., Lai, F.: A “medium-field” multivariate public-key encryption scheme. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 132–149. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  44. Yang, B.-Y., Chen, J.-M.: All in the XL family: Theory and practice. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 67–86. Springer, Heidelberg (2005)

    Google Scholar 

  45. Yang, B.-Y., Chen, J.-M.: Theoretical analysis of XL over small fields. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 277–288. Springer, Heidelberg (2004)

    Google Scholar 

  46. Yang, B.-Y., Chen, J.-M.: Building secure tame-like multivariate public-key cryptosystems: The new TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. University of Cincinnati and Technische Universität Darmstadt,  

    Jintai Ding

  2. Ecole Normale Superieur,  

    Christopher Wolf

  3. Institute of Information Science, Academia Sinica and TWISC,  

    Bo-Yin Yang

Authors
  1. Jintai Ding
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Christopher Wolf
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Bo-Yin Yang
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Tatsuaki Okamoto Xiaoyun Wang

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Ding, J., Wolf, C., Yang, BY. (2007). ℓ-Invertible Cycles for \(\mathcal{M}\)ultivariate \(\mathcal{Q}\)uadratic (\({\mathcal{MQ}}\)) Public Key Cryptography. In: Okamoto, T., Wang, X. (eds) Public Key Cryptography – PKC 2007. PKC 2007. Lecture Notes in Computer Science, vol 4450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71677-8_18

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-71677-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71676-1

  • Online ISBN: 978-3-540-71677-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature