Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Public Key Cryptography

PKC 2007: Public Key Cryptography – PKC 2007 pp 249–265Cite as

  1. Home
  2. Public Key Cryptography – PKC 2007
  3. Conference paper
Cryptanalysis of HFE with Internal Perturbation

Cryptanalysis of HFE with Internal Perturbation

  • Vivien Dubois1,
  • Louis Granboulan1 &
  • Jacques Stern1 
  • Conference paper
  • 1895 Accesses

  • 13 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4450)

Abstract

Multivariate Cryptography has been an active line of research for almost twenty years. While most multivariate cryptosystems have been under attack, variations of the basic schemes came up as potential repairs. In this paper, we study the Internal Perturbation variation of HFE recently proposed by Ding and Schmidt. Although several results indicate that HFE is vulnerable against algebraic attacks for moderate size parameters, Ding and Schmidt claim that the cryptosystem with internal perturbation should be immune against them. However in this paper, we apply the recently discovered method of differential analysis to the Internal Perturbation of HFE and we find a subtle property which allows to disclose the kernel of the perturbation. Once this has been achieved, the public key can be inverted by attacking the underlying HFE provided the parameters were taken low enough to make the perturbed scheme of competitive performance.

Keywords

  • multivariate cryptography
  • HFE
  • internal perturbation
  • differential cryptanalysis
  • binary vector spaces

Chapter PDF

Download to read the full chapter text

References

  1. Courtois, N.: The Security of Hidden Field Equations (HFE). In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 266–281. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  2. Ding, J.: A New Variant of the Matsumoto-Imai Cryptosystem through Perturbation. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 305–318. Springer, Heidelberg (2004)

    Google Scholar 

  3. Ding, J., Gower, J.E., Schmidt, D., Wolf, C., Yin, Z.: Complexity Estimates for the F4 Attack on the Perturbed Matsumoto-Imai Cryptosystem. In: Smart, N.P. (ed.) Cryptography and Coding. LNCS, vol. 3796, pp. 262–277. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  4. Ding, J., Schmidt, D.: Cryptanalysis of HFEv and Internal Perturbation of HFE. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 288–301. Springer, Heidelberg (2005)

    Google Scholar 

  5. Dubois, V., Granboulan, L., Stern, J.: An Efficient Provable Distinguisher for HFE. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 156–167. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  6. Faugère, J.-C., Joux, A.: Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003)

    Google Scholar 

  7. Fell, H.J., Diffie, W.: Analysis of a Public Key Approach Based on Polynomial Substitution. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 340–349. Springer, Heidelberg (1986)

    Google Scholar 

  8. Fouque, P.-A., Granboulan, L., Stern, J.: Differential Cryptanalysis for Multivariate Schemes. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 341–353. Springer, Heidelberg (2005)

    Google Scholar 

  9. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999)

    Google Scholar 

  10. Granboulan, L., Joux, A., Stern, J.: Inverting HFE Is Quasipolynomial. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 345–356. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  11. Matsumoto, T., Imai, H.: Public Quadratic Polynominal-Tuples for Efficient Signature-Verification and Message-Encryption. In: EUROCRYPT, pp. 419–453 (1988)

    Google Scholar 

  12. Garey, M., Johnson, D.: Computer and Intractability: A guide to the theory of NP-completeness. Freeman, New York (1979)

    Google Scholar 

  13. NESSIE. European project IST-1999-12324 on New European Schemes for Signature, Integrity and Encryption.

    Google Scholar 

  14. Patarin, J.: Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)

    Google Scholar 

  15. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

    Google Scholar 

  16. Motwani, R., Raghavan, P.: Randomized Algorithms, pp. 67–74. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  17. Shamir, A.: Efficient Signature Schemes Based on Birational Permutations. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 1–12. Springer, Heidelberg (1994)

    Google Scholar 

  18. University of Sydney Computational Algebra Group. The MAGMA Computational Algebra System.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. École normale supérieure, DI, 45 rue d’Ulm, 75230 Paris cedex 05, France

    Vivien Dubois, Louis Granboulan & Jacques Stern

Authors
  1. Vivien Dubois
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Louis Granboulan
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Jacques Stern
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Tatsuaki Okamoto Xiaoyun Wang

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Dubois, V., Granboulan, L., Stern, J. (2007). Cryptanalysis of HFE with Internal Perturbation. In: Okamoto, T., Wang, X. (eds) Public Key Cryptography – PKC 2007. PKC 2007. Lecture Notes in Computer Science, vol 4450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71677-8_17

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-71677-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71676-1

  • Online ISBN: 978-3-540-71677-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature